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Abstract—This work focusses on studying lag-bipartite consen-
sus for linear multi-agent systems (MAS) with a leader where
the agents interact via a signed directed graph. In this consensus
problem over a signed graph, one group of followers achieve
the exact leader state value after a certain delay while another
group achieves this value in magnitude, but opposite in sign after
the same delay. The consensus is achieved by designing both
distributed state feedback and distributed observer-based output
feedback control protocols with appropriate design parameters. It
is established in this work that if the underlying communication
graph has a rooted directed spanning tree whose root is the
leader, then the objective of realizing lag-bipartite consensus
is achieved in this setting. The numerical examples verify the
theoretical results of the work.

Index Terms—Multi-agent systems, lag-bipartite consensus,
signed directed graph, output feedback.

I. INTRODUCTION

Over the years, MAS has evolved as a burgeoning research
topic that can be ascribed to its implementations in numerous
areas like unmanned aerial vehicles (UAV), robotics, smart
grid, opinion dynamics [1], etc. Among all the collective
behaviours of MAS [2], consensus is of particular interest
for the control research community where all the networked
agents agree upon a common value of a particular quantity
of interest through their local interaction with one-another.
When these agents collaborate or cooperate through the local
control laws to realize the control objectives, it is known as
collaborative or cooperative control. There is copious amount
of studies carried out on collaborative control of MAS that
interact over unsigned graph [3] where the agents achieve the
control tasks by cooperating with one-another. Interestingly,
such graphs fail to represent interactions in some practical
scenarios where the objectives or interest of some of the agents
may be different. In such cases, it is more plausible to assume
that both cooperation and competition coexist in the MAS;
examples include opinion dynamics [4], PageRank algorithm
[5], two-party robotic vehicle systems [6], etc. Signed graphs
[7] are more suitable to describe such interactions where
a positive edge-weight represents cooperation or friendship
between two neighbours and a negative edge-weight represents
competition or enmity. This type of consensus study, therefore,
is the main focus of this work.

In [8] bipartite consensus is first introduced over a signed
graph where it needs to maintain structural balance property.
The equivalence of consensus problem and bipartite consensus
problem is discussed in [9]. Bipartite consensus of input
saturated linear leaderless MAS is investigated in [6]. Mean-
square bipartite consensus is investigated in [10] for first-order
integral MAS subjected to measurement noise. The problem
of sign-consensus have been studied for first order integral
MAS and general linear MAS in [11] and [12], respectively.
Quantized leaderless bipartite consensus for single integrator
models has been studied in [13].

Time-delays has certain effects in communication network
of agents that can never be ruled out. More specifically, state
or input delays have some effects on consensus convergence
that is investigated in [14], [15]. However, [16] introduces lag
consensus where the followers’ states lag behind the leader’s
corresponding state for a certain time. The study can indeed
be helpful for network or traffic congestion problems [17].
It is noteworthy to mention that in the previous works of
the authors’ [18], [19], lag-bipartite consensus problem with
adaptive coupling and with actuator saturation, respectively
have been investigated over signed undirected graph with
state feedback laws. However, directed graph (digraph) is
more generalized and cost-effective than undirected graph as
bidirectional connectivity is not required to be maintained in
the former. Moreover, output feedback control laws have more
advantages compared to the state feedback laws when it comes
to practical modelling of control systems. Therefore, in this
work, the focus is achieving this type of consensus on digraph
and with suitable feedback law.

In this work, lag-bipartite consensus is studied over a
weighted signed digraph. This type of consensus refers to a
set of followers agreeing with the leader’s state value in both
magnitude and sign after a certain delay while the other set
reaching agreement only on the magnitude and opposite in sign
after the same delay. However, it is considered that only a few
followers called pinning agents receive the direct information
about the leader state value. Therefore, in order for the leader
information to be accessible by all the follower agents, a
rooted directed spanning tree whose root is at the leader
node is considered in the communication graph topology. The
contribution of this work are:
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(i) First, this work studies lag-bipartite consensus for more
general linear dynamical agents in leader-follower setting
compared to lower order agents like single-integrator or double
integrator models in leaderless MAS.
(ii) Second, the underlying communication graph considered
is a signed digraph which is more generalized and feasible
than an undirected graph from a practical implementation
standpoint.
(iii) Third, the work in addition to proposing a distributed
state feedback control protocol also proposes a distributed
observer-based output feedback law, considering that only
output measurements are accessible by neighbouring agents.
This approach bears significant practical relevance [20].

The organization of the remaining portion of the paper is as
follows. In Section II, the preliminaries on the used notations
and the pertinent graph theory concepts are given. The MAS
model and problem formulation have been provided in Section
III. The principal technical results are laid out in Section IV.
Section V discusses the simulation results and Section VI
provides the concluding comments.

II. PRELIMINARIES

This section provides the used notations and discuses some
pertinent graph theory concepts.

A. Used Notations

Let, �N = {1, 2, . . . , N}. The N-dimensional Euclidean
space and the set of all M ×N real matrices are represented
by R

N and R
M×N , respectively. Superscript T represents

the transpose of a matrix or a vector. P > 0 (P ≥ 0)
and P < 0 (P ≤ 0) represent a positive (semi-)definite
and a negative (semi-)definite matrix, respectively. The ith

eigenvalue of a real square matrix P is denoted by λi(P ) while
its minimum eigenvalue is denoted by λmin(P ). Identity matrix
of n × n dimension is represented by In while 0 represents
a zero vector or zero matrix of appropriate dimension. ⊗
represents the Kronecker product. diag(g1, g2, . . . , gn) and
col(g1, g2, . . . , gn) represent a diagonal matrix and a column
vector, respectively where gi (i ∈ �n) are diagonal and column
elements, respectively. Signum function is denoted by sign.
Re(.) represents the real part of a complex scalar. || and ||.||
denote the absolute value of a scalar and Euclidean norm of
a vector, respectively. Null set is denoted by ∅.

B. Graph Theory

A weighted signed digraph G = (V , E ,As) is con-
sidered in this paper for the N networked agents where
V = {v1, v2, · · · , vN}, E ⊆ {(vi, vj) : vi, vj ∈ V}, and
As = [aij ]N×N are the node set, the edge set, and the
weighted signed adjacency matrix, respectively. If aij �= 0,
then (vj , vi) ∈ E ; aij = 0, otherwise. No self-loop is
considered in this work, i.e., aii = 0. Moreover, aij ≥ 0
and aij ≤ 0 represent the cooperative and the competitive
interactions between two interacting agents, respectively. The
graph is considered digon sign-symmetric, i.e., aijaji > 0.
Ni = {vj : (vj , vi) ∈ E} denotes the set of all the adjacent

(neighbour) nodes of ith agent. A digraph contains a rooted
directed spanning tree if there exists at least a root node
such that it has a directed path to every other node in the
graph. The augmented graph G = (V, E) contains the leader
node as the 0th agent, i.e., v0 where V = V ∪ {v0} and
E ⊆ {(vi, vj) : vi, vj ∈ V}. Pinning matrix is represented
by Dp = diag{δ1, δ2, . . . , δN} where δi > 0, if ith follower
has direct access to leader state information, otherwise δi = 0,
∀i ∈ �N . Laplacian matrix is given as Ls = Ds −As where
Ds = diag(

∑
j∈N1

|a1j |,
∑

j∈N2
|a2j |, . . . ,

∑
j∈NN

|aNj |) is
the degree matrix. A matrix Hs ∈ R

N×N is defined such that
Hs = Ls +Dp.

In [8], it is shown that to achieve bipartite consensus the
underlying graph topology must be structurally balanced [7].
If the node set V of a signed graph G = (V, E ,As) can be
divided into two sets of nodes V1 and V2 in such a way that
V1∪V2 = V , V1∩V2 = ∅, and aij ≥ 0, ∀vi, vj ∈ Vq , (or Vr),
and aij ≤ 0, ∀vi ∈ Vq , ∀vj ∈ Vr where q �= r, q, r ∈ {1, 2},
then the signed graph is said to be structurally balanced. A
column vector S is defined such that S = col(s1, s2, . . . , sN )
where si = 1, ∀vi ∈ Vq and si = −1, ∀vi ∈ Vr.

Assumption 1: The followers’ communication graph G =
(V, E ,As) is structurally balanced and the augmented graph
G = (V, E) contains a rooted directed spanning tree that has
the root at the leader node. This means that there is at least
an agent i for which δi > 0, i ∈ �N .

Remark 1: Under Assumption 1, Re(λi(Hs)) > 0 (∀i ∈
�N ), and Ls has a simple 0 eigenvalue and all its other
eigenvalues have positive real parts.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This section provides the system dynamics and the problem
statement.

A. Agent Dynamics

The system dynamics of N networked homogeneous linear
followers can be written as,

ẋi(t) = Axi(t) +Bui(t), ∀i ∈ �N

yi(t) = Cxi(t) (1)

where xi(t) ∈ R
n, yi(t) ∈ R

m, and ui(t) ∈ R
p are the state,

output, and control input vectors of ith agent, respectively.
A ∈ R

n×n, B ∈ R
n×p, and C ∈ R

m×n are the system matrix,
input matrix, and output matrix for the agents, respectively.

The system dynamics of the leader is written as,

ẋ0(t) = Ax0(t)

y0(t) = Cx0(t) (2)

where x0(t) ∈ R
n and y0(t) ∈ R

m are the state and output
vectors of the leader, respectively.

Assumption 2: The pair (A,B) is stabilizable and the pair
(A,C) is detectable which are required for the solvability of
algebraic Riccati equation (ARE) (6) and the observer-based
protocol, respectively.

The definition of lag-bipartite consensus is as follows,
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Definition: For MAS (1) and (2) with any initial value, lag-
bipartite consensus is achieved with suitable feedback control
protocols if,

lim
t→∞ ||xi(t)− six0(t−Δ)|| = 0, ∀i ∈ �N (3)

where si is defined in Section II-B, and Δ > 0 is communi-
cation delay between the leader and the followers. Moreover,
lag-bipartite consensus error is given as,

exi
(t) = xi(t)− six0(t−Δ), ∀i ∈ �N (4)

B. Problem Formulation

Find a distributed state and a distributed observer-
based output feedback control law over a structurally bal-
anced signed digraph such that, for any initial value of
all the agents in the MAS comprising the followers (1)
and a leader (2), they achieve lag-bipartite consensus (3),
or equivalently, limt→∞ ||ex(t)|| = 0, where ex(t) =
[eTx1

(t) eTx2
(t) . . . eTxN

(t)]T ∈ R
Nn is the stacked error vector.

IV. PRINCIPAL TECHNICAL RESULTS

This section spells out the main results of the work.

A. Distributed State Feedback Control Protocol

For the followers (1), the following distributed state feed-
back control protocol is designed,

ui(t) = −cK(
∑
j∈Ni

|aij |(xi(t)− sign(aij)xj(t))

+ δi(xi(t)− six0(t−Δ))) (5)

where c > 0 is the scalar coupling gain and K ∈ R
p×n is the

feedback gain matrix, both of which will be designed later.
The following Theorem is provided to realize the lag-bipartite
consensus with distributed state feedback control law.

Theorem 1. MAS (1) and (2) achieve lag-bipartite consensus
with distributed state feedback protocol (5) over a structurally
balanced signed digraph if (A − cλi(Hs)BK) (∀i ∈ �N ) is
Hurwitz, and designed parameters are c ≥ 1

2Re(λmin(Hs))
and

K = BTQ, where Q ∈ R
n×n is the positive definite solution

to the following ARE:

ATQ+QA−QBBTQ+ In = 0 (6)

Proof. In a compact form, (4) can be expressed as,

ėx(t) = (IN ⊗A)ex(t) + (IN ⊗B)u(t) (7)

where u(t) = [uT
1 (t) u

T
2 (t) . . . u

T
N (t)]T is the stacked control

input vector. Noting that sign(aij)sj = si, ∀(vj , vi) ∈ E , ui(t)
can be written from (5) as,

ui(t) = −cK(
∑
j∈Ni

|aij |(exi(t)− sign(aij)exj (t)) + δiexi(t))

(8)
Equivalently, (8) can also be expressed as,

u(t) = −(cHs ⊗K)ex(t) (9)

where Hs is defined in Section II-B. Then, using (9), error
dynamical system (7) can be expressed as,

ėx(t) = (IN ⊗A− cHs ⊗BK)ex(t) (10)

Clearly, lag-bipartite consensus is reached when (IN ⊗ A −
cHs ⊗ BK) is Hurwitz. To that end, there exits a non-
singular matrix Σ ∈ R

N×N such that Σ−1HsΣ = J =
diag(J1, J2, . . . , Jl) ∈ R

N×N is the Jordan canonical form
of Hs where Jk (k ∈ �l) are upper triangular Jordan
blocks whose diagonal elements are λi(Hs) (i ∈ �N ). Let,
ey(t) = (Σ−1⊗In)ex(t) be the new error state transformation.
Then, the new error state dynamics can be given as,

ėy(t) = (Σ−1 ⊗ In)ėx(t)

= (IN ⊗A− cJ ⊗BK)ey(t) (11)

It can be easily observed that (IN ⊗A− cJ ⊗BK) is also an
upper triangular block matrix having diagonal block elements
(A−cλi(Hs)BK) (i ∈ �N ). Therefore, the eigenvalues of the
matrix (IN⊗A−cJ⊗BK) are given by the eigenvalues of the
matrix (A − cλi(Hs)BK). Hence, if (A − cλi(Hs)BK) are
Hurwitz matrices, then it follows that lag-bipartite consensus
is achieved. In addition, to design the scalar coupling gain and
feedback gain matrix, the following is obtained using (6),

(A− cλi(Hs)BK)TQ+Q(A− cλi(Hs)BK)

= −In − (2cλi(Hs)− 1)QBK

Since Q > 0, then it is obvious from Lyapunov theory [20] that
(A−cλi(Hs)BK) (∀i ∈ �N ) is Hurwitz if the scalar coupling
gain c ≥ 1

2Re(λmin(Hs))
and feedback gain matrix K = BTQ.

This completes the proof.

B. Distributed Observer-based Output Feedback Control Pro-
tocol

Based on the measurement of the outputs of the neigh-
bouring agents, the distributed observer-based output feedback
protocol designed for the MAS (1) and (2) is as follows,

żi(t) = Azi(t) +Bui(t)− P (yi(t)− Czi(t))

ui(t) = −cK(
∑
j∈Ni

|aij |(zi(t)− sign(aij)zj(t))

+ δi(zi(t)− siz0(t−Δ)))

ż0(t) = Az0(t)− P (y0(t)− Cz0(t)) (12)

where zi(t) and z0(t) are the state-estimates of the ith follower
and the leader, respectively, and P ∈ R

n×m is observer gain
matrix, chosen such that (A+PC) is a Hurwitz matrix. Such
a gain matrix P exists because (A,C) is detectable. Moreover,
c ∈ R and K ∈ K

p×n are design gain parameters in the form
of scalar coupling and feedback matrix, respectively. A The-
orem is presented below to realize the lag-bipartite consensus
with the distributed output feedback control protocol.

Theorem 2. MAS (1) and (2) achieve lag-bipartite consen-
sus with distributed observer-based output feedback control
law (12) over a structurally balanced signed digraph if the
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designed parameters are such that c ≥ 1
2Re(λmin(Hs))

and
K = BTQ2 where W = Q−1

2 ∈ R
n×n is the positive definite

solution to the following algebraic Riccati inequality (ARI):

WAT +AW −BBT < 0 (13)

Proof. Let, ei(t) =

[
exi

(t)
ezi(t)

]
=

[
xi(t)− six0(t−Δ)
zi(t)− siz0(t−Δ)

]
∈

R
2n, (∀i ∈ �N ) be the extended error vector, where exi(t) ∈

R
n is the lag-bipartite consensus error and ezi(t) ∈ R

n is the
observer estimation error for ith agent. Then, using (1), (2),
and (12), extended error state for ith agent can be given as,

ėi(t) = Aei(t)−cΓ(
∑
j∈Ni

|aij |(ei(t)−sign(aij)ej(t))+δiei(t))

(14)

where A =

[
A 0

−PC A+ PC

]
and Γ =

[
0 BK
0 BK

]
. Then, in

a more compact form, (14) can be written as follows,

ė(t) = (IN ⊗A− cHs ⊗ Γ)e(t) (15)

where e(t) = [eT1 (t) e
T
2 (t) . . . e

T
N (t)]T ∈ R

2Nn is the stacked
extended error vector. Obviously, (15) is a stability problem.

Let, ζ(t) = (IN ⊗ Ω)e(t) where Ω =

[
In −In
0 In

]
. It

can be easily obtained that Ω−1 =

[
In In
0 In

]
. Therefore, the

following can be obtained,

ζ̇(t) = (IN ⊗ Â− cHs ⊗ Γ̂)ζ(t) (16)

where Â = ΩAΩ−1 =

[
A+ PC 0
−PC A

]
, and Γ̂ = ΩΓΩ−1 =[

0 0
0 BK

]
. Clearly, (16) is also a stability problem. Therefore,

following the same methods as in Theorem 1, a new extended
error dynamics can be obtained as,

ω̇(t) = (IN ⊗ Â− cJ ⊗ Γ̂)ω(t) (17)

where ω(t) = (Σ−1 ⊗ I2n)ζ(t) ∈ R
2Nn is the new extended

error state, and J = Σ−1HsΣ is the Jordan form of Hs.
Clearly, lag-bipartite consensus is reached with asymptotic
stabilization of the observer estimation error if the matrix
(IN⊗Â−cJ⊗Γ̂) is Hurwitz. Moreover, (IN⊗Â−cJ⊗Γ̂) is an
upper triangular block matrix whose block diagonal elements
are (Â− cλi(Hs)Γ̂), and therefore, the eigenvalues of (IN ⊗
Â− cJ ⊗ Γ̂) are given by the eigenvalues of (Â− cλi(Hs)Γ̂).
Consequently, if (Â − cλi(Hs)Γ̂) (i ∈ �N ) is Hurwitz, then
lag-bipartite consensus is reached with asymptotic stabilization
of observer estimation error. Let, Q = diag(Q1, Q2) where
Q1 = QT

1 ∈ R
n×n satisfies (A+PC)TQ1+Q1(A+PC) < 0

for the Hurwitz matrix (A + PC), and Q2 satisfies (13).
Then, from Lyapunov stability theorem, for Hurwitz matrix
(Â− cλi(Hs)Γ̂), one obtains the following,

(Â− cλi(Hs)Γ̂)
TQ+Q(Â− cλi(Hs)Γ̂) < 0 (18)

Moreover, (18) can be equivalently written as,[
Υ −χ

−χT ATQ2 +Q2A− 2cλi(Hs)Q2BK

]
< 0 (19)

where χ = CTPTQ2 ∈ R
n×n, Υ ∈ R

n×n and Υ = (A +
PC)TQ1+Q1(A+PC) < 0. On pre- and post-multiplication
of (19) by diag(I,Q−1

2 ) is yielded,[
Υ −CTPT

−PC WAT +AW − 2cλi(Hs)BBT

]
< 0 (20)

where W = Q−1
2 and K = BTQ2. Since, Υ < 0, therefore,

from Schur complement lemma [21], it can be easily obtained
that WAT + AW − 2cλi(Hs)BBT < 0. Then, considering
c ≥ 1

2Re(λmin(Hs))
, and K = BTQ2, ARI (13) can be obtained.

This completes the proof.

V. EXAMPLE AND SIMULATIONS

Fig. 1 shows the signed digraph of a group of seven
followers and a leader. Clearly, the leader, indicated by the
0th node, is the root of the rooted directed spanning tree
of the graph topology. The cooperative and the competitive
interactions between the agents are represented by the solid
and the dotted lines, respectively. The structural balance
property of the underlying communication topology is evident
from Fig. 1 with V1 = {1, 2, 3, 4} and V2 = {5, 6, 7}. In
addition, agent 1 and agent 5 are cooperative and compet-
itive with the leader, respectively. Various matrices for the

MAS are: A =

[
0 1
−1 0

]
, B =

[
0 1

]T
, C =

[
0 1

]
.

Obviously, (A,B) is stabilizable and (A,C) is detectable.
Moreover, observer gain matrix P =

[
0 −1

]T
is chosen such

that (A + PC) is Hurwitz. Moreover, scalar coupling gains
c = 3.0274 and c = 16.0274 are chosen from Theorem 1 and
Theorem 2, respectively. Using MATLAB [22], for Theorem

1, ARE (6) solution Q =

[
1.9123 0.4142
0.4142 1.3522

]
and feedback

gain matrix K =
[
0.4142 1.3522

]
are obtained, while for

Theorem 2, ARI (13) solution W =

[
10.3300 −0.5387
−0.5387 10.3300

]
,

and feedback gain matrix K = −BTQ2 = −BTW−1 =[−0.0811 −1.5558
]

are obtained. The initial state val-
ues xi(0) (i = 0, 1, . . . , 7) of ith agent are: x0(0) =
[0.34 0.64]T , x1(0) = [−0.10 0.14]T , x2(0) = [0.45 −
0.14]T , x3(0) = [−0.18 − 0.64]T , x4(0) = [0.50 0.60]T ,
x5(0) = [−0.15 − 0.18]T , x6(0) = [−0.56 0.78]T , and
x7(0) = [0.60 − 0.14]T . The initial observer-state values

Fig. 1. Communication graph topology of the MAS
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zi(0) (i = 0, 1, . . . , 7) for ith agent’s observer are: z0(0) =
[0.24 0.74]T , z1(0) = [0.40 −0.34]T , z2(0) = [−0.14 −
0.16]T , z3(0) = [−0.38 0.42]T , z4(0) = [0.30 − 0.56]T ,
z5(0) = [−0.25 − 0.28]T , z6(0) = [−0.60 0.10]T , and
z7(0) = [0.50 − 0.42]T . The lag factor is taken as Δ = 2
sec.
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Fig. 2. State evolution xi1(t) and xi2 (t) (i = 0, 1, . . . , 7) of MAS with
state feedback law (5) and with Δ= 2 sec
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Fig. 3. State evolution xi1(t) and xi2(t) (i = 0, 1, . . . , 7) of MAS with
output feedback law (12) and with Δ= 2 sec
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Fig. 4. Observer state evolution zi1(t) and zi2(t) (i = 0, 1, . . . , 7) of MAS
with output feedback law (12) and with Δ= 2 sec

The state evolution of MAS (1) and (2) with state feedback
control protocol (5) is shown Fig. 2. It can be easily seen that
agents in V1 reach consensus with the leader state value in both
sign and magnitude after a delay of Δ = 2 sec while agents
in V2 reach consensus in modulus with the leader state value,
opposite in sign after the delay Δ = 2 sec. Thus, bipartite
consensus is achieved for the two groups of agents while with
respect to the leader, they reach lag-bipartite consensus. On
the other hand, Fig. 3 and 4 show the state and observer state
evolutions with output feedback control protocol (12) where

also it is observed that lag-bipartite consensus is achieved with
a delay of Δ = 2 sec that further demonstrates that both lag-
bipartite consensus and estimation error are simultaneously
stabilized with the distributed output feedback control law
(12).

VI. CONCLUSIONS

Lag-bipartite consensus of linear MAS has been investigated
over a structurally balanced signed digraph containing a rooted
directed spanning tree having its root at the leader. Two
distributed feedback controllers with suitably designed gain
parameters achieve lag-bipartite consensus. The numerical
simulations corroborate the theoretical results. However, the
consensus control protocols of this work depend on the
spectral property of the communication network. The future
direction of the research will be to implement fully adaptive
control laws which are independent of topology information.
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