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Abstract—This paper dwells upon the synchronization phe-
nomena in Hindmarsh-Rose (HR) neuron model of N number of
neurons with time-varying communication delays between them.
By considering a suitable Lyapunov-Krasovskii (L-K) functional,
the synchronization criteria is obtained in terms of linear matrix
inequality (LMI) for asymptotically stabilizing the error dynamics
between the master-slave neuron configuration. The effectiveness
of the proposed method is established through the numerical
simulations of the neuron model.

Keywords—Synchronization, time-varying delay, Hindmarsh-
Rose neuron model, Lyapunov-Krasovskii (LK) functional, linear
matrix inequality (LMI).

I. INTRODUCTION

Synchronization is one of the most important and sig-
nificant properties of complex dynamical networks [1], [2].
Rigorous analysis on synchronization is provided in [3]. The
pioneering work [4] laid the foundation in this direction.
Neural synchronization have been studied in biological systems
also [5], [6]. Abnormal neural synchronization is associated
with various neurological disorders such as schizophrenia [7],
Parkinson’s disease [8]. Synchronization or consensus is also
studied in multi-agent systems and robotics [9], [10] and secure
communication and cryptography [11].

Various behaviours of neurons are based on dynamical
principles. A detailed and rigorous analysis is provided in [12].
Hodgkin and Huxley (HH) in their seminal work [13] demon-
strated the underlying mechanism of membrane potential based
on ionic conductance. FitzHugh and Nagumo [14] simplified
the four-state HH model to a two-state model extracting its
excitation dynamics. The shortcoming of FitzHugh-Nagumo
(FHN) model is its inability to exhibit bursting behaviour
of neurons. This problem was overcome by Hindmarsh-Rose
(HR) [15] with their three-state model that can exhibit various
neuro-computational features [16].

In [17], synchronization condition of two electrically cou-
pled HR neurons under low-energy cost is studied. Adaptive
feedback control schemes are proposed in [18] and [19] to
achieve synchronization between two HR neurons with mis-
matched parameters. Multistate and multistage synchronization
of HR neuron in presence of both chemical and electrical
synapse are analyzed in [20]. The stability analysis of the
synchronizing states in the identical and non-identical HR
neuronal network is provided in [21]. Both nearest and global
coupling through membrane potential and spiking variable are
considered in this work.

It is certain that, like in every-other communication, the
existence of time-delay is inevitable in neuronal communica-
tion as well. Synchronization of neural networks and complex
dynamical systems with time-delays has been analyzed in
details in [1], [2], [5], [22]. In [23], constant time-delay
synchronization of two HR neurons is achieved using a linear
adaptive feedback controller and a parameter update law. The
effect of constant time-delay on bursting frequency and phase
synchronization in coupled neurons is studied in [24]. Suitable
controllers are designed to achieve synchronization of constant
time-delayed two-coupled HR neuron system with stochastic
noise in [25]. Synchronization criteria for two-coupled HR
neurons under state-dependent constant delay is analyzed in
[26].

In this work, synchronization is studied for a network
of N number of coupled HR neurons with time-varying
communication delays between them.

The organization of the paper is as follows. In Section II,
the model description is laid out followed by the proposed
synchronization criteria in Section III. Section IV presents the
simulated results and establishes the accuracy and effectiveness
of the methods while Section V provides the concluding
remarks.

II. PRELIMINARIES AND MODEL DESCRIPTION

Notations: R+ = (0,∞) and R = (∞,−∞) denote
the set of all positive real numbers, and the set of all real
numbers, respectively. Rn and Rm×n denote the n-dimensional
Euclidean space, and the set of all m × n real matrices,
respectively. The transpose of a matrix A ∈ Rm×n is denoted
by AT ∈ Rn×m. A ∈ Rn×n > 0 (A ∈ Rn×n < 0) means
that the matrix A is symmetric, positive (negative) definite
while A ∈ Rn×n ≥ 0 (A ∈ Rn×n ≤ 0) means the matrix
is symmetric, positive (negative) semidefinite. In ∈ Rn×n

represents a real identity matrix of n × n dimension. A ⊗ B
implies the Kronecker product of two matrices A ∈ Rp×q

and B ∈ Rr×s to yield a matrix Θ ∈ Rpr×qs. ||.|| represents
the norm of a vector. If there exists an interaction between i-th
node and j-th node in the neuron network, then it is represented
by i ↔ j, and if there exists no interaction between these
nodes, then denoted by i= j, where i, j = 1, 2, . . . , N , and
N is the number of neurons in the network. A diagonal matrix
is represented by diag(g1, g2, . . . , gn) ∈ Rn×n with gi being
diagonal elements (i = 1, 2, . . . , n).

The dynamical representation of an uncoupled HR neuron



is given as below,
ẋ(t) = y(t)− bx3(t) + ax2(t)− z(t) + Iext
ẏ(t) = c− dx2(t)− y(t)

ż(t) = r(s(x(t)− x̄)− z(t)) (1)

where states x, y, and z represent the membrane potential,
spiking variable (fast current), and bursting variable (slow
adaptation current), and a, b, c, d, r, and s are real constant
parameters while x̄ represents the resting potential of the
neuron (1), and Iext is the externally applied current to the
neuron.

In this work, a coupled network of N number of HR
neurons with time-varying communication delays has been
considered. A network model of coupled HR neurons with
time-varying communication delays is as follows,

ẋi(t) = yi(t)− bx3i (t) + ax2i (t)− zi(t) + Iext

+ c̄
N∑

j=1
j ̸=i

gij(xj(t− τ(t))− xi(t− τ(t)))

ẏi(t) = c− dx2i (t)− yi(t)

żi(t) = r(s(xi(t)− x̄)− zi(t)) (2)

where i, j = 1, 2, . . . , N with N being the number of neurons
in the network, c̄ ∈ R represents the overall coupling strength
in the network, G = (gij)N×N represents the topology of the
network and is known as coupling matrix whose elements are
defined as below,

gij =


gji ≥ 0, if i↔ j, ∀ i ̸= j

gji = 0, if i= j, ∀ i ̸= j

gii = −
N∑

j=1
j ̸=i

gij , ∀i = j
(3)

Remark: It is evident from (3) that G ∈ RN×N is a row (and
column) sum zero matrix.

If all the elements of the coupling matrix G is 1, then the
HR neurons in the network are said to have uniform coupling.
A model of coupled HR neurons with uniform coupling takes
the form as

ẋi(t) = yi(t)− bx3i (t) + ax2i (t)− zi(t) + Iext

+ c̄
N∑

j=1
j ̸=i

(xj(t− τ(t))− xi(t− τ(t)))

ẏi(t) = c− dx2i (t)− yi(t)

żi(t) = r(s(xi(t)− x̄)− zi(t)) (4)

The master neuron model is considered to be an isolated
(uncoupled) node and is given as,

ẋm(t) = ym(t)− bx3m(t) + ax2m − zm(t) + Iext
ẏm(t) = c− dx2m(t)− ym(t)

żm(t) = r(s(xm(t)− x̄)− zm(t)) (5)

The master neuron model has the reference trajectory for
other neurons to achieve synchronization. In the next section,
the analysis of synchronization of the neurons is provided in
details.

III. SYNCHRONIZATION OF COUPLED HR NEURONS
WITH TIME-VARYING DELAY

In this section, synchronization criteria for N number of
coupled HR neurons under time-varying communication delays
is derived.

Definition: Synchronization between i-th neuron and a
master neuron are said to be achieved if

lim
t→∞

∥Xi(t)−Xm(t)∥ = 0, ∀i = 1, 2, . . . , N

where Xi = [xTi , y
T
i , z

T
i ]

T and Xm = [xTm, y
T
m, z

T
m]T

represent the state vector of a i-th neuron and master neuron,
respectively.

Assumption: The time varying delay τ(t) is considered
such that τ̇(t) < σ where σ > 0.

The neuron model (2) augmented by the control laws wix,
wiy , and wiz ( i = 1, 2, . . . , N ) is considered the slave model
and is given as below,

ẋis(t) = yis(t)− bx3is(t) + ax2is(t)− zis(t) + Iext

+ c̄

N∑
j=1
j ̸=i

gij(xjs(t− τ(t))− xis(t− τ(t)))

+ wix(t)

ẏis(t) = c− dx2is(t)− yis(t) + wiy(t)

żis(t) = r(s(xis(t)− x̄)− zis(t)) + wiz(t) (6)

where the control laws are given as,
wix(t) = b(x3is(t)− x3m(t))− a(x2is(t)− x2m(t))

+ k1(xis(t)− xm(t))

+ k2(xis(t− τ(t))− xm(t− τ(t)))

wiy(t) = d(x2is(t)− x2m(t)) + k3(yis(t)− ym(t))

+ k4(yis(t− τ(t))− ym(t− τ(t)))

wiz(t) = k5(zis(t)− zm(t))

+ k6(zis(t− τ(t))− zm(t− τ(t))) (7)

with ki (i = 1, 2, . . . , 6) being the controller gains in (7).

The errors between the corresponding states of the slave
model (6) and master model (5) are defined as ei1(t) =
xis(t)−xm(t), ei2(t) = yis(t)− ym(t), and ei3(t) = zis(t)−
zm(t) ( i = 1, 2, . . . , N ). Thus, the error dynamics for i-th
neuron can be written as,
ėi1(t) = ei2(t)− ei3(t) + k1ei1(t) + k2ei1(t− τ(t))

+ c̄
N∑
j=1

gijej1(t− τ(t))

ėi2(t) = (k3 − 1)ei2(t) + k4ei2(t− τ(t))

ėi3(t) = rsei1(t) + (k5 − r)ei3(t) + k6ei3(t− τ(t)) (8)

If the error vector and the delayed error vector for the i-th
neuron are defined as ei(t) = [eTi1(t), e

T
i2(t), e

T
i3(t)]

T , and
ei(t − τ(t)) = [eTi1(t − τ(t)), eTi2(t − τ(t)), eTi3(t − τ(t))]T ,
respectively, then (8) can be written in a compact form as,

ėi(t) = (Σ+∆1)ei(t)+∆2ei(t−τ(t))+ c̄
N∑
j=1

gijAej(t−τ(t))

(9)



where Σ =

[
0 1 −1
0 −1 0
rs 0 −r

]
, ∆1 = diag[k1, k3, k5], ∆2 =

diag[k2, k4, k6], and A = diag(1, 0, 0).

The error dynamics of the network of N number of HR
neurons is derived as,

ė(t) = [IN ⊗ (Σ +∆1)]e(t) + [(IN ⊗∆2) + c̄(G⊗A)]

× e(t− τ(t)) (10)

where the error vector of the system is given by,

e(t) = [eT1 (t), e
T
2 (t), . . . , e

T
N (t)]T .

The objective is to obtain the synchronization criteria for
the coupled HR neurons with time-varying communication de-
lays between them. This is achieved when limt→∞ ∥e(t)∥ = 0.

The following theorem is proposed to achieve the synchro-
nization of the HR neurons.

Theorem 1: Given scalers c̄ < 0 and σ > 0, a network
of HR neurons with time-varying delay given by (6) synchro-
nizes if there exist a diagonal matrix R̄ ∈ R3N×3N > 0,
H ∈ R3N×3N where H = diag(H1,H2, . . . , HN ) and
Hi = diag(hi1, hi2, hi3) such that hil > 0 ( i=1,2,. . . ,N and
l=1,2,3) and a diagonal matrix M ∈ R3N×3N > 0 such that
the following LMI holds[

Φ1 Φ2

⋆ (σ − 1)MH

]
≤ 0 (11)

where Φ1 =MR̄[IN ⊗ (Σ+∆1)]+ [IN ⊗ (ΣT +∆T
1 )]R̄M +

MH , and Φ2 =MR̄(IN ⊗∆2) + c̄MR̄(G⊗A)

Proof: A suitable L-K functional is chosen as below,

V (e(t)) = eT R̄e(t) +
N∑
i=1

3∑
l=1

∫ t

t−τ(t)

hile
2
il(s) ds (12)

Time-derivative of (12) along the trajectories of (10) yields,

V̇ (e(t)) = 2eT (t)R̄ė(t) +
N∑
i=1

3∑
l=1

[hile
2
il(t)− hile

2
il(t− τ(t))

× (1− τ̇(t))]

≤ 2eT (t)R̄[IN ⊗ (Σ +∆1)]e(t) + 2eT (t)R̄[(IN ⊗∆2)

+ c̄(G⊗A)]e(t− τ(t)) +

N∑
i=1

3∑
l=1

[hile
2
il(t)

− hile
2
il(t− τ(t))(1− σ)]

= ψT

[
Φ̄1 Φ̄2

⋆ (σ − 1)H

]
ψ (13)

where ψ=
[

e(t)
e(t− τ(t))

]
, Φ̄1=2R̄[IN ⊗ (Σ + ∆1)] + H , and

Φ̄2=R̄[(IN ⊗∆2) + c̄(G⊗A)].

To achieve synchronization among the neuron states i.e.,
stabilizing the error dynamics, V̇ (e(t)) ≤ 0 which implies[

Φ̄1 Φ̄2

⋆ (σ − 1)H

]
≤ 0 (14)

It can be easily observed that Φ̄1 in (14) is not a

symmetric matrix. Pre-multiplying (14) by
[
M 0
0 M

]
where

M ∈ R3N×3N > 0 for symmetrizing yields[
Φ1 Φ2

⋆ (σ − 1)MH

]
≤ 0 (15)

which completes the proof.

IV. SIMULATION AND RESULTS

In this work, N = 4 number of coupled HR neurons, and
an isolated master neuron is considered. All the simulations
have been performed in MATLAB [27]. By choosing the
following set of parameters for an isolated master neuron, the
simulation of the trajectory of the uncoupled neuron model (1)
is shown in Fig. 1.

a = 3, b = 1, c = 1, d = 5, x̄ = 1.6, s = 4, Iext = 3.1,
r = 0.005, x(0) = 0.1, y(0) = 0.2, z(0) = 0.3 where x(0),
y(0), and z(0) are the initial state values of x, y and z in (1).

Time(sec)
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Fig. 1: Time evolution of uncoupled HR neuron
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Fig. 2: Synchronization of four coupled HR neurons and
master neuron with the proposed control law

In addition to the above parameters, to achieve synchro-
nization with the isolated master neuron, and hence synchro-
nization among the N = 4 neurons (2), the following parame-
ters are also considered: τ(t) = 1− 0.7e−t, σ = 2, c̄ = −0.2,
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Fig. 3: Error trajectories of neuron 1 and master neuron

Time(sec)

0 1 2 3 4 5

E
r
r
o
r

-0.4

-0.2

0

0.2

0.4
e

x12
e

y12
e

z12

Fig. 4: Error trajectories of neuron 1 and neuron 2

X10 = [0.1 0.24 0.56]
T , X20 = [0.34 0.54 0.23]

T ,
X30 = [0.13 0.22 0.64]

T , X40 = [0.18 0.34 0.78]
T ,

and Xm0 = [0.28 0.79 0.38]
T where Xi′0 (i′ = 1, 2, 3, 4)

are the initial states of i′-th neuron, and Xm0 is the initial state
of the master neuron. The coupling matrix of the network (2)
is considered as,

G =

−1.5 0.6 0.5 0.4
0.6 −0.8 0.1 0.1
0.5 0.1 −3.1 2.5
0.4 0.1 2.5 −3.0

 (16)

The following gain matrices are obtained by solving LMI
in (11) using MATLAB YALMIP toolbox [28] and coupling
matrix given in (16):

∆1 =

[−9.3513 0 0
0 −23.6313 0
0 0 −14.7192

]

∆2 =

[−4.5523 0 0
0 0.0001 0
0 0 0.0002

]

Fig. 2 shows the evolution trajectories of the four HR
neurons, and the isolated master neuron with the proposed
control laws (7). It is observed that they are synchronized under
the control laws (7). Fig. 3 shows the error dynamics between
neuron 1 and the master neuron where e11, e12, and e13
represent the errors between the corresponding states of neuron
1 and master neuron, respectively. It is observed that the errors

between the corresponding states are asymptotically stable,
reaching a zero steady-state value. Fig. 4 shows the error
dynamics between neuron 1 and neuron 2 where ex12, ey12,
and ez12 represent the errors between corresponding states of
neuron 1 and neuron 2, respectively. It can be observed that the
respective errors between the corresponding states of neuron 1
and neuron 2 are asymptotically stable, reaching a zero steady-
state value. These results show that with the proposed control
laws, the synchonization of four coupled HR neurons has been
achieved under time-varying delays.

V. CONCLUSION

This work investigates synchronization criteria for a net-
work of N number of HR neuron model. The N = 4 coupled
network achieves synchronization under time-varying delay
with different initial conditions. The synchronization criteria is
given in terms of LMI. As a future scope, the present design
framework can be used for other neuron models with the effect
of stochastic noise.

REFERENCES

[1] W. Yu, J. Cao, and J. Lu, “Global synchronization of linearly hybrid
coupled networks with time-varying delay,” SIAM J. Appl. Dyn. Syst.,
vol. 7, no. 1, pp. 108–133, 2008.

[2] J. Tang, C. Zou, and L. Zhao, “A general complex dynamical network
with time-varying delays and its novel controlled synchronization
criteria,” IEEE Syst J., vol. 10, no. 1, pp. 46–52, 2016.

[3] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry and Engineering. USA: Westview Press,
2014.

[4] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,”
Phys. Rev. Lett, vol. 64, no. 8, pp. 821–825, 1990.

[5] Z. G. Esfahani, L. L. Gollo, and A. Valizadeh, “Stimulus-dependent syn-
chronization in delayed-coupled neuronal networks,” Sci. Rep., vol. 6,
no. 23471, 2016.

[6] Y. Penn, M. Segal, and E. Moses, “Network synchronization in hip-
pocampal neurons,” Proc. Natl. Acad. Sci., vol. 113, no. 12, pp. 3341–
3346, 2016.

[7] S. Williams and P. Boksa, “Gamma oscillations and Schizophrenia,” J.
Psychiatry Neurosci., vol. 35, no. 2, pp. 75–77, 2010.

[8] L. L. Rubchinsky, C. Park, and R. M. Worth, “Intermittent neural
synchronization in Parkinson’s disease,” Nonlinear Dyn., vol. 68, no. 3,
pp. 329–346, 2012.

[9] S. Su, Z. Lin, and A. Garcia, “Distributed synchronization control of
multiagent systems with unknown nonlinearities,” IEEE Trans. Cybern.,
vol. 46, no. 1, pp. 325–338, 2016.

[10] H. Wang, P. X. Liu, and S. Liu, “Adaptive neural synchroniza-
tion control for bilateral teleoperation systems with time delay and
backlash-like hysteresis,” IEEE Trans. Cybern., to be published,
doi:10.1109/TCYB.2016.2644656.

[11] S. Lakshmanan, M. Prakash, C. P. Lim, R. Rakkiyappan, P. Balasub-
ramaniam, and S. Nahavandi, “Synchronization of an inertial neural
network with time-varying delays and its application to secure com-
munication,” IEEE Trans. Neural Netw. Learn. Syst., to be published,
doi:10.1109/TNNLS.2016.2619345.

[12] S. J. Schiff, Neural Control Engineering: The Emerging Intersection
between Control Theory and Neuroscience. Cambridge, Massachusetts,
USA: The MIT Press, 2012.

[13] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve,” J. Physiol., vol. 117, no. 4, pp. 500–544, 1952.

[14] R. FitzHugh, “Impulses and physiological states in theoritical models
of nerve membrane,” Biophys. J., vol. 1, no. 6, pp. 445–466, 1961.

[15] J. L. Hindmarsh and R. M. Rose, “A model of neuronal bursting using
three coupled first order differential equations,” Proc. Roy. Soc. London
B Biol. Sci., vol. 221, no. 1222, pp. 87–102, 1984.



[16] E. M. Izhikevich, “Which model to use for cortical spiking neurons,”
IEEE Trans. Neural Netw, vol. 15, no. 5, pp. 1063–1070, 2004.

[17] A. Moujahid, A. d’Anjou, F. J. Torrealdea, and F. Torrealdea, “Effi-
cient synchronization of structurally adaptive coupled Hindmarsh-Rose
neurons,” Chaos Solitons Fract., vol. 44, no. 11, pp. 929–933, 2011.

[18] Z. Wang and X. Shi, “Chaos bursting synchronization of mismatched
Hindmarsh-Rose systems via a single adaptive feedback controller,”
Nonlinear Dyn., vol. 67, no. 3, pp. 1817–1823, 2012.

[19] L. H. Nguyen and K. Hong, “Adaptive synchronization of two coupled
chaotic Hindmarsh-Rose neurons by controlling the membrane potential
of a slave neuron,” Appl. Math. Model., vol. 37, no. 4, pp. 2460–2468,
2013.

[20] F. Jhou, J. Juang, and Y. Liang, “Multistate and multistage synchroniza-
tion of Hindmarsh-Rose neurons with excitatory chemical and electrical
synapses,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 6, pp.
1335–1347, 2012.

[21] S. R. D. Djeundam, R. Yamapi, G. Filatrella, and T. C. Kofane,
“Stability of the synchronized network of Hindmarsh-Rose neuronal
models with nearest and global couplings,” Commun Nonlinear Sci
Numer Simulat., vol. 22, no. 1-3, pp. 545–563, 2015.

[22] W. He, F. Qian, Q. Han, and J. Cao, “Synchronization error estimation
and controller design for delayed Lur’e systems with parameter mis-
matches,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp.
1551–1563, 2012.

[23] X. Shi and Z. Wang, “Adaptive synchronization of time delay
Hindmarsh-Rose neuron system via self-feedback,” Nonlinear Dyn.,
vol. 69, no. 4, pp. 2147–2153, 2012.

[24] A. Nordenfelt, J. Used, and M. A. F. Sanjuan, “Bursting frequency
versus phase synchronization in time-delayed neuron networks,” Phys.
Rev. E, vol. 87, no. 052903, 2013.

[25] X. Shi, L. Han, Z. Wang, and K. Tang, “Synchronization of delay
bursting neuron system with stochastic noise via linear controllers,”
Appl Math Comput., vol. 233, pp. 232–242, 2014.

[26] S. Lakshmanan, C. P. Lim, S. Nahavandi, M. Prakash, and P. Balasub-
ramaniam, “Dynamical analysis of the Hindmarsh-Rose neuron with
time delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 8, pp.
1953–1958, 2017.

[27] (1994-2015) The MATLAB website. [Online]. Available:
http://www.mathworks.com

[28] (2016) YALMIP Toolbox website. [Online]. Available:
https://yalmip.github.io/

View publication stats

https://www.researchgate.net/publication/326678134

