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Abstract—Biochemical networks normally operate in the
neighbourhood of its steady-state which may be of multiple in
number. It may reach from one steady-state to other within a
finite time. In this paper, it is shown how the biochemical network
reaches to a desired steady-state within optimal time and energy,
with positive control input. Control signals i.e., the independent
state variables in the network, are found in two steps. The first
step is designed for steering biochemical network to a desired
state within a finite time and then, in the second step, the steered
state is preserved as a steady-state of the network. In the first
step, the synergism and saturation system, commonly known as
S-system, is transformed to the linear controllable Brunovsky
Canonical form using feedback linearization and then the optimal
control theory is used to find optimal control input. In second
step, the control inputs are found from steady-state equations
for the new steady-state. In this article, it is shown how to select
control inputs so that, biochemical network will reach to a desired
steady-state applying a feasible control input profile instead of
designing a complex feedback path.

Index Terms—Controllability, Feedback linearzation, Hamilto-
nian function, S-system, Glycolysis, Glycogenolysis.

I. INTRODUCTION

Due to the environmental and genetic changes, growth rate

of cells is time-varying. In some biochemical systems, it is

required to coordinate the cell growth. Nowadays, due to

availability of high throughput data, the biochemical networks

can be modelled as a system of ordinary differential equations.

Natural biochemical network is robust [1], [2]. The steady-

state behaviour of the biochemical network is studied by

Chen et al. [3]. The regulation of the transient behaviour

is also an important issue in biochemical network. Model

predictive control (MPC) algorithm is developed in [4] that

directly guides the target variables to their desired values. The

controllability of biochemical network is shown in [5]. To

choose a combination of control inputs and design it properly

for optimally reach to a desired state is a major challenge

now. The objective of this article is to selecting control input

combination to steer the biochemical system to a new steady-

state.

The cellular and intracellular metabolite processes are col-

lection of enzymatic reaction. There are various models to

study the biochemical pathways. Among these, the S-system,

[3], [6], referring to the synergism and saturation properties

of biochemical network, is one of the most popular model.

The general equation describing the temporal changes in a

biochemical system can be formulated as

ẋi=αi

n+m
∏

j=1

x
gij
j −βi

n+m
∏

j=1

x
hij

j , i=1, 2, · · · , n (1)

where n>0, m≥0 and x1, x2, · · · , xn+m≥0 are the con-

centrations of metabolites, such as substrates and products of

the biochemical pathways. xi, i=1, · · · , n denote n dependent

variables. The independent variables xj , j=n+1, ..., n+m

may act as catalyst in the metabolic process governed by (1).

The rate of change of concentration is the difference between

the production and the degradation term. The non-negative

rate constants, αi≥0 and βi≥0 are the production and the

degradation rate constants respectively. Each variable xj is

raised to the power by kinetic parameters gij and/or hij , which

are known as kinetic orders of the S-system.

A Feedback linearization technique is described in the follow-

ing section to linearize the nonlinear biochemical network. The

contributions of this paper are (1) finding possible combination

of independent variables to acheive a desired steady-state, and

(2) steering the biochemical network to a desired steady- state

with positive control input.

II. CLASSICAL FEEDBACK LINEARIZATION

Following two are required to understand classical feedback

linearization. Let R denote the set of all real numbers and

R
m×n be the set of all real matrices with m rows and n

columns.

Definition Let g1(X), g2(X),..., gk(X) be k number of n-

dimensional vector fields that form a matrix

G= [g1(X) g2(X) · · · gk(X)] (2)

978-1-4673-2272-0/12/$31.00 ©2012 IEEE 216
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If the matrix has rank k at X=X0 and the augmented matrix

[g1(X) g2(X) ... gk(X) [ gi(X), gj(X)]]

has the same rank at X=X0 for any arbitrary index pair (i, j)
with 1 ≤ i, j ≤ k, then the vector field set {g1, g2, ..., gk} is

called involutive [5].

The nonlinear system is converted to linear approximation

around an operating point, then the wider control methodology

for linear system is applied there. But, this type of control

methodology works only in neighbourhood of the equilibrium

point. This problem can be mostly overcome by feedback

linearization technique. The transformed linear system works

in larger operating region. After the classical feedback lin-

earization, the transformed system is in the Brunovsky Canon-

ical form [7] . This type of transformation is possible only

for input-affine nonlinear systems. Consider an input-affine

nonlinear system

Ẋ = f(X)+g(X)u=f(X)+

m
∑

i=1

gi(X)ui (3)

where X∈Rn denotes the state, u∈Rm is the control input, and

f(X), g1(X), · · · , gm(X) are smooth vector fields defined on

an open subset of Rn. Affine non-linear systems are lineariz-

able if and only if they satisfy certain conditions. Choosing

an index number m=n1 ≥ n2 ≥ · · · ≥ nN ,
N
∑

i=1

ni=n, where

m and n are the number of inputs and the order of the system

respectively, a set of necessary and sufficient conditions for a

multi-input system (3) is as follows.

(i) The following n sets of vector fields

D1= {g1}
· · · · · ·
Dn1

= {g1, g2, · · · , gn1
}

Dn1+1= {Dn1
; adfg1}

· · · · · ·
Dn1+n2

= {Dn1
; adfg1, · · · , adfgn2

}
· · · · · ·
Dn=

{

Dn−nN
; adN−1

f g1, · · · , ad
N−1

f gnN

}

are involutive near the equilibrium state, x0 of (3),

where adkfgi(X) is the kth order Lie bracket defined as

adkfgi(X)=
[

f(X), adk−1

f gi(X)
]

and ad0fgi(X)=gi(X).

(ii) The matrix Dn is nonsingular at the point x0 The

feedback linerization algorithm is shown step by step in [5]. In

next section Glycolysis and Glycogenolysis pathway will be

linearized, considering possible combination of control inputs

those are satisfying necessary and sufficient conditions for

feedback linearization.

III. EXAMPLE: GLYCOLYSIS AND GLYCOGENOLYSIS

PATHWAY

The nominal dynamical equation of the S-system model of

the Glycolysis and Glycogenolysis pathway is as follows:

ẋ1 =
(

7.78843× 10−2
)

x4
0.66x6−1.0627082x1.53

1 x−0.59
2 x7,

ẋ2 =
(

5.85012402× 10−1
)

x1
0.95x−0.41

2 x0.32
5 x0.62

7 x0.38
10

−
(

7.93456× 10−4
)

x2
3.97x−3.06

3 x8,

ẋ3 =
(

7.93456× 10−4
)

x2
3.97x−3.06

3 x8−1.05880847 x3
0.3x9.

(4)

where the dependent variables are x1, x2, and x3. The

independent variables have the nominal values x4=10, x5=5,

x6=3, x7=40, x8=136 , x9=2.86 , x10=4 [6].

A. Selection of Control Input Combination

The independent variables x6, x7, x9 and x10 are enzymatic

control variables in (4). Among them [x6 x9]
T , [x6 x10]

T

and [x6 x9 x10]
T are the possible combinations as they are

satisfying necessary and sufficient conditions for feedback

linearization [5] . To achieve a new steady-state, at least one

control variable should be on the right hand side of the each

differential equation of (4), at steady-state ẋi=0 for i=1, 2, 3.

[x6 , x9 x10]
T is only possible combination of control variables

to steer the system to a new steady-state.

B. Exact Linearization

It is possible to use three controls upon embeding the

system (4) in a four-dimensional space by defining an auxiliary

variable, xa4 such as the integrall of x1 , which is given in

differential form as ẋa4 = x1. Now, for control input u1 = x6,

u2 = x0.38
10 and u3 = x9, the system (4) becomes

Ẋ = f(X) +

3
∑

i=1

gi(X)ui, (5)

where f(X) =









−42.5083 x1.53
1 x−0.59

2

−0.1079x2
3.97x−3.06

3

0.1079x2
3.97x−3.06

3

x1









g1(X) = [0.356 0 0 0]
T

,

g2(X) =
[

0 9.6408x1
0.95x−0.41

2 0 0
]T

,

g3(X) =
[

0 0 − 1.058808x0.3
3 0

]T
.

With the following linearization steps described in [5], the

transformed variables, zi, i=1, 2, 3, 4, will be as follows:

Z=T (X)=









x1

x2 − x3

x3 − xa4

xa4









(6)

where, Z = [z1 z2 z3 z4]
T

, X = [x1 x2 x3 xa4]
T

. The

Z=T (X) is a diffeomorphism transformation. The feedback
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control inputs become

u1 = 2.80899(v1 + 42.5083x1.53
1 x−0.59

2 )

u2 = 0.103726x−0.95
1 x0.41

2 (v2 + v3 + 0.1079x3.97
2 x−3.06

3 + x1)

u3 = −0.944459x−0.3
3 (v3 − 0.1079x3.97

2 x−3.06
3 + x1) (7)

Then the affine nonlinear control system (5) is converted into

a linearized controllable Brunovsky canonical form as follows,

ż1 = v1,

ż2 = v2,

ż3 = v3,

ż4 = z1. (8)

where z1, z2, z3, and z4 are transformed states and v1, v2 and

v3 are virtual control inputs. The schematic is shown in Fig.

1. Optimal vertual control input is designed in next section to

steer one state to another of system (8).

                             

 Linear System
Transformed

Coordinate Transformation X=T −1(Z)

x
x
x

1

2

3

u1
v1

2

v1

v2

v3

z1

z2

z3

v
v3

Feedback Nonlinear
SystemFunction u2

u 3

Fig. 1. Schematic diagram of feedback linearization

IV. DETERMINATION OF OPTIMAL CONTROL INPUTS FOR

STEERING STATES

The optimal control inputs v1 , v2 and v3 of the system (4)

are found by minimizing the cost function:

J =
1

2

∫ tf

t0

(v21 + v22 + v23) dt.

The Hamiltonian is defind as [8]

H(t, Z, v, λ) = 1

2
(v21 + v22 + v23) + λ1(t)v1(t) + λ2(t)v2(t) +

λ3(t)v3(t) + λ4(t)z1(t)
where, λ1, λ2, λ3, and λ4 are the costates of the Hamiltonian

system.

Using Pontryagin’s minimum principle, the necessary con-

ditions for the optimal control input is

(
∂H

∂vi
)∗ = 0, i=1, 2, 3.

(
∂H

∂zj
)∗ = −λ̇∗

j (t),

(
∂H

∂λj

)∗ = ż∗j (t), j=1, 2, 3, 4.

[H∗ + (
∂S

∂t
)∗]tf δtf + [(

∂S

∂Z
)∗ − λ∗(t)]Ttf δZf = 0. (9)

where * denotes the optimal operating point. S is the final cost,

considerd as zero and λ(t) = [λ1(t) λ2(t) λ3(t) λ4(t)]
T

. Zf

is the final state at final time, tf . For fixed final value and

fixed final time problem δZf = 0 and δtf = 0.

Solving (9) for fixed final value and fixed time, the optimal

states are as follows:

z∗1(t) = c4
t2

2
− c1t+ c5

z∗2(t) = −c2t+ c6

z∗3(t) = −c3t+ c7

z∗4(t) = c4
t3

6
− c1

t2

2
+ c5t+ c8 (10)

The optimal virtual control inputs are

v∗1 = c4t− c1

v∗2 = −c2

v∗3 = −c3. (11)

where t is time in minute, ci, i=1, · · · , 8 are constants which

can be found from boundary value solution of (10). It is

evident from (6), the boundary values of auxiliary state, xa4

is required to set the boundary values of Z. The controller

profile is sensitive to boundary values of auxiliary state, xa4.

The selection of proper boundary value of auxiliary state, xa4,

is requered considering the limitations of biological control

inputs (x6, x9, and x10).

V. DETERMINATION OF CONTROL INPUTS TO ACHIEVE A

NEW STEADY-STATE

Using control design methodology in Section IV, the

system can be steered to a new state within the finite time,

but if it is not a steady-state then the system state will change

instantaneously after that, as the linearized system is unstable

in nature. This problem can be solved by applying a simple

technique. In first step, the system will reach to the desired

state using control signal (x6, x9 and x10 as in section IV) and

in the second step these three control signals will be obtained

by solving the steady-state equation of (4). This is as follows:

0.356x6−42.5083 x1.53
1 x−0.59

2 =0

9.6408x1
0.95x−0.41

2 x0.38
10 −0.1079x2

3.97x−3.06
3 =0

0.1079x2
3.97x−3.06

3 −1.058808x0.3
3 x9=0. (12)

at the desired steady-state x1=0.134, x2=0.93 and x3=0.3.

VI. RESULTS AND DISCUSSION

The objective is to determine control signals that steer

the system (4) from its initial state, defined by metabolic

concentration X̄(t0)=[x1(t0) x2(t0) x3(t0)]
T

to a target state

X̄(tf )=[x1(tf ) x2(tf ) x3(tf )]
T

in the time interval [t0, tf ].
If the system (4) is initially at nominal steady-state

X̄(t0)=[0.067 0.465 0.150]
T

, the goal is to achieve desired

steady-state X̄(tf )=[0.134 0.93 0.3]
T

within time t=1 min.

The system achieves the desired steady-state (as shown in Fig.

2(a)) with the modified value of the control input x6=5.7556,

x9=4.3651, and x10=7.8554, as shown in Fig. 2(b). If the

new constant control input is applied at t0=1 min, the system

reaches to steady-state nearly at tf=6 min as shown in Fig.

218

Authorized licensed use limited to: The Ohio State University. Downloaded on July 27,2022 at 14:52:58 UTC from IEEE Xplore.  Restrictions apply. 



2. This procedure has two limitations (1) the system may not

reach the desired state within desired time, and (2) the transient

state trajectories may not follow the optimum path.

Considering the optimal transient path, fixed time interval,

tf−t0=1 min, , xa4(t0)=0 and xa4(tf )=0.1, the virtual

optimal control inputs are v∗1=0.006t+0.064, v∗2=0.315 and

v∗3=0.05 as per (9), (10) and (11). Fig. 3(a) shows the optimal

trajectories of x1, x2, and x3. Here the initial state is assumed

as the nominal steady-state. Fig. 3(b) shows the profile of

control input (x6, x9, and x10). Initially they have their

nominal constant values x6=3, x9=2.86, and x10=4 as per

(4). At time, t0=1 min, the control signal is generated by

feedback linearization and optimal control approach to steer

the steady-states x1, x2 and x3. Then, at time tf=2 min the

control signals have constant values x6=5.7556, x9=4.3651,

and x10=7.8554. Thus, the transient time (to reach the desired

steady-state from a given initial state) is now under the

choice of the biochemical system designer. In this case, it is

tf−t0=1 min.
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Fig. 2. Steering from nominal steady-state to desired steady-state (two times
of nominal steady-state) using new constant controller values. (a) Trajectories
of states x1, x2, and x3. (b) Profiles of control variables x6, x9, and x10.

Applying fixed control input continuously for t≥2 min,

the system remains in this new steady-state. But, still there

is a sudden jump in enzyme profile of x10 in Fig. 3(b).

From (12), it is clear that x10 is highly affected by x2.

In order to to reduce this sudden jump in x10, the final

value of x2 should be decreased. Now, Fig. 4(a) shows the

optimal trajectories of x1, x2, and x3 and Fig. 4(b) shows the

profile of control input (x6, x9, and x10) for steering steady-

state from nominal steady-state X̄(t0)=[0.067 0.465 0.150]
T

,

to X̄(tf )=[0.134 0.665 0.3]
T

within time tf=2 min, where

t0=1 min .
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Fig. 3. Steering from nominal steady-state to desired steady-state (two times
of nominal steady-state), within t = 1 min, using feedback linearization and
optimal control method. (a) Trajectories of states x1, x2, and x3. (b) Profiles
of control variables x6, x9, and x10.
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Fig. 4. Steering from nominal steady-state to desired steady-state
(x1(tf )=0.134, x2(tf )=0.665, and x3(tf )=0.3 ), within tf−t0=1 min,
using feedback linearization and optimal control method. (a) Trajectories of
states x1, x2, and x3. (b) Profiles of control variables x6, x9, and x10.

VII. CONCLUSION

In this paper, it is found that the possible control signal

profile steers biochemical network from one steady-state to an-

other steady-state. The selection procedure for possible control
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inputs combination is discussed in detail. It is proposed that the

complex network design can be avoided, considering suitable

enzymes as the control input. This preliminary design can be

improved by incorporating suitable biological constraints on

the seclected control variables.
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