
CCU: Algorithm for Concurrent Consistent Updates
for a Software Defined Network

Radhika Sukapuram, Gautam Barua
Dept. of Computer Science and Engineering

Indian Institute of Technology Guwahati
Assam, India 781039

Email: {r.sukapuram,gb}@iitg.ernet.in

Abstract—A Software Defined Network has its control plane
separated from its data plane, with the control plane providing
abstractions for development of control programs that alter the
state of the network by updating the rules installed in switches.
Switch updates are central to an SDN and updates must be such
that there are no packet drops or loops. An update property which
ensures that the traces generated for a packet are either due to the
old network configuration or due to the new configuration, but
never a combination of both, thus preventing packet drops and
loops, is called per-packet consistency. We envisage that large data
center networks supporting multiple tenants and network virtu-
alization will need a large number of concurrent updates due to
VM creation, VM migration, network management applications
etc. There are algorithms in the literature that enable concurrent
updates and improve update speed but they are either not general
or do not preserve per-packet consistency. This paper proposes
an update algorithm, Concurrent Consistent Updates (CCU), that
is general, is per-packet consistent and that enables concurrent
disjoint updates. Since the size of a TCAM on a switch is small,
rule tables implemented in software are used to supplement the
TCAM. The algorithm makes use of a Software Rules Table to
restrict updates to only the internal switches that genuinely need
an update and to reduce update installation time.

I. INTRODUCTION

Massive data centres, virtualization and cloud computing
make networks very complex. In existing networks, switches
need to be often individually and manually configured, whether
to change Access Control Lists (ACL) or to add or remove
nodes from the network, or for traffic engineering (TE), as
there is no programmatic interface available to dynamically
and centrally control switch behaviour. Network hardware is
complex and hard to manage and therefore creates lock-in
with a specific vendor. Both the interfaces to switches and the
software are closed and proprietary. Innovations in networking
are harder because changes to networking equipment take
time. Networking equipment is varied, with middle-boxes such
as intrusion detectors, firewalls, server load balancers and
network address translators, in addition to routers and switches,
adding to the complexity [1].

A network is composed of a control plane and a data plane:
the data plane examines packet headers and takes a forwarding
decision by matching a forwarding table, while the control
plane builds the forwarding table. A Software Defined Network
(SDN) has its control plane separated from the data plane [2].
It also provides abstractions to the control plane so that the
control plane is programmable. All the switches are logically
connected to a controller and the controller programs the

switches by updating the rules in their rule tables to implement
functions such as routing, isolation, TE etc. Dynamically
updating switches is fundamental to SDN applications. The
protocol between the controller and the switches and the
specifications of the switches themselves are defined by the
Open Networking Foundation and is called Openflow [3].
All the complexity of managing the network is within the
controller, while operators can write control programs above
the controller to implement their functions.

An Openflow switch consists of one or more flow tables, a
group table, and a channel that interfaces with the Controller.
A flow table consists of a set of flow entries or rules. Each
flow entry has match fields, priority, counters, timers, and
instructions that need to be applied to matching packets. Flow
entries are installed in order of priority. Packets are matched
with the match fields and the instructions associated with the
first matched entry are executed. If there is no matching entry,
the instructions in the table-miss flow entry are executed -
this entry has wildcards for all match fields and has the lowest
priority. The instruction may be an action such as forwarding a
packet to a port or modifying a packet header, or a modification
of the pipeline. Using the Openflow protocol, the Controller
can add, delete or modify flow entries. The timer associated
with a flow entry is used to specify the maximum amount of
time before it is deleted by the switch. The counter is updated
when packets are matched with a flow entry. Depending on
the rules installed, an Openflow switch can behave as a router,
a switch or a middle-box. SDN has gained success in the
industry with usage of SDN in their WAN by Google [4],
for virtualisation in their product NSX, by VMWare [5] and
for their data centre networks, by Microsoft [6], in addition
to commercial Openflow switches from various vendors and
multiple Controller platforms [1].

During updates, it is desirable that several properties are
preserved, one of which is per-packet consistency (PPC),
where the traces generated by a packet entering the network
must either be due to the network configuration before the
update is installed or due to the network configuration after
the update is installed, and never a combination of both [7].
This prevents packets from looping or getting dropped during
an update, which is significant, as the update speed is far lesser
than the packet switching speed.

Rules are typically stored in a TCAM, which is a scarce
resource. To supplement a TCAM, a rule table can be im-
plemented in software, in conjunction with a TCAM [8].
Enhanced Two-Phase Update with a Software Rules Table



(E2PU-SRT) [9], specifies a mechanism to address failures
and to delete the old rules, for a per-packet consistent update.
It uses a Software Rules Table (SRT) to speed up updates.
While earlier work that preserves PPC [7] requires rules in
every switch to be modified for every update, [9] mentions
how to avoid that.

Suppose the existing rules in a network are labelled v0. The
algorithm to install a new set of updates of version 1, v1, as per
E2PU-SRT, is as follows: 1) The controller sends “Commit”
with v1 rules to all the affected switches. The internal switches
install these rules in the SRT, while the ingresses just store
the rules internally. 2) Each switch that processes “Commit”
responds with “Ready to Commit”. 3) After receiving “Ready
to Commit” from the expected switches, the controller sends
“Commit OK” to the ingresses and the internal switches.
The ingresses install v1 rules and simultaneously start tagging
packets with v1. 4) All the switches that process “Commit OK”
respond with “Ack Commit OK” with their current time, To. 5)
After receiving “Ack Commit OK” from all the ingresses, the
controller denotes the latest To as Tl and sends “Discard Old”
to the switches that have old rules, to delete the old rules. 6)
The internal switches that receive “Discard Old” delete the old
rules whenever their current time Tc exceeds Tl +M , where
M is the maximum life-time of a packet in the network, while
ingresses delete the old rules immediately. 7) After deleting
the old rules, each switch sends a “Discard Old Ack” to the
controller.

The objective of this paper is to describe a general,
concurrent, per-packet consistent, update algorithm.

II. MOTIVATION FOR CONCURRENT PPC UPDATES

A. Motivation for per-packet consistent updates

E2PU-SRT has two interesting properties: 1) it does not
make assumptions about the toplogical properties of the update
or the nature of flows and therefore works for all situations 2)
it preserves PPC.

A concurrent update is one in which updates from more
than one SDN application or multiple updates from the same
application can be installed simultaneously. An Equivalence
Class (EC) of packets is the set of packets that use the same
set of forwarding actions from the ingress to the egress. If one
or more updates is disjoint, the ECs of packets affected by any
two of those updates is disjoint.

E2PU-SRT, as it exists, does not allow concurrent disjoint
updates. This is because every update affects every rule in
every switch: thus effectively, there are no disjoint updates
(even though, in reality, the updates may be disjoint).

If all the paths affected by an update are known in
advance, using the mechanisms identified in [10] or [11],
then concurrent updates are possible preserving PPC, using
E2PU-SRT. Suppose for an update, an internal switch requires
this rule to be inserted: “tcp port=80, forward2”. This rule
affects a very large number of paths (ECs) in a network.
Identifying the number of paths that affect a large number
of ECs is not possible in a manner that is fast enough for real
implementations [10]. Only for the scenarios where the paths
can be identified, disjoint updates can be installed in parallel.

Preserving PPC is important because it will prevent packet
drops and loops during updates.

B. Motivation for concurrency

In a large data centre that supports network virtualization
and multiple tenants, the following will generate network
updates:

1) Each tenant will require multiple VMs to be created
[12], all belonging to a virtual network of a certain
topology. VMs will need to be assigned to servers
depending on what the VM allocator wishes to op-
timize. To isolate one tenant from another, for rate
limiting etc., the controller will need to update the
virtual switches on servers. The physical switches
will need to be updated to implement the virtual
network to physical network mapping [13], [14].

2) Orthogonal to this, there will be an “SDN applica-
tions store” consisting of applications such as Mi-
croTE [15], which proposes updating the network
every few seconds for TE, and Hedera [16], which
proposes updates when the load changes, for better
flow scheduling. The frequency of updates will also
depend on the number of apps that can be meaning-
fully run simultaneously. A list of apps is in [17].

3) VM migration may involve migrating the entire vir-
tual network, further generating updates [18], which
are more complex than the above categories, as it
involves cloning switches and allowing other updates
while the migration is in progress. VM migration is
stated as a solution for TE, energy savings, disaster
management, cloud bursting etc. and will need to be
frequently done.

There are algorithms in the literature that enable concur-
rent updates and improve update speed but they are either not
general or do not preserve PPC. This is further discussed in
section VI.

III. CONCURRENCY REQUIREMENTS

We envisage a network model where applications from
either the same controller or different controllers issue updates.
Each update gets a unique tag from the controller (or a central
entity in the case of multiple controllers). After the controller
receives “Ready to Commit” from all the switches that process
“Commit” the update is said to be stage1-complete. After the
controller receives “Ack Commit OK” from all the switches
that process “Ack Commit”, the update is said to be stage2-
complete. After the controller receives all the “Discard Old
Ack” messages, the update is complete.

The controller sends a “Commit” to the switches as soon
as a tag is allocated. Let there be several “Commit” messages
sent, belonging to different versions. If an update n + 1 is
stage1-complete before an update n, it must be possible to
proceed with the rest of the update for n+1, without waiting
for n to be stage1-complete. Ideally, this must be possible in all
situations. Practically, this depends on the level of concurrency.
This is further explained in section V.

An update u2 that intersects with an update u1 may begin
as soon as u1 is complete and not earlier. An application will
issue u2 only after u1 is complete.



IV. OUR CONTRIBUTION

The algorithm stated below accomplishes the following:
C1) it is PPC C2) it allows concurrent disjoint updates C3)
it makes no assumptions on the sequence of updates or the
nature of rules and is therefore general C4) it minimises the
number of internal switches to be updated by restricting the
update to only those internal switches that require a genuine
rule change. C5) it provides a trade off between concurrency
and packet header overhead.

V. CCU: CONCURRENT CONSISTENT UPDATES

A. Rule installation in internal switches

We assume Openflow switches to make the descriptions
easy. An internal switch has a rule table implemented in an
SRT, “in series” with a rule table implemented in a TCAM.
A packet, on entering an internal switch, is first matched with
the rules in the SRT. If there is no match, it is forwarded to
the TCAM.

All rules are first inserted into the SRT, at a higher priority
than the previous version of the rules. The new rules check
packets for a specific version number. Whenever the previous
version of rules, if any, is deleted, the version field of the
current version of rules is changed to don’t cares so that they
cease checking packets for a version number. If there is no
previous version to be deleted, then the new rule need not
check for a version number, to begin with. The old rules will
typically be in the TCAM, though they can be in the SRT too,
but always at a lower priority than the new rules.

B. Version tagging of packets

Each packet has a version tag, followed by 4 bits, called
the status bits. The status bit denotes the status of the update,
with the most significant bit denoting the status of the update
which is 1 less than the value of the version tag, the next
significant bit 2 less than the value of the version tag and so on.
Each status bit is set to 1 if the update corresponding to that
version is stage1-complete. This means that rules belonging
to that version are operational and that packets, if any, are
getting switched according to those rules. If the version tag
of a packet is n, all updates with versions less than or equal
to n − 4 are in the state “Commit OK sent”, or later. For
example, 10 : 0110 indicates that update versions 10, 8 and 7
are stage1-complete, and 5 and below are in the state “Commit
OK sent”, or later. Update versions 9 and 6 are not stage1-
complete. The updates for which the status bit is set are
called companion updates. The number of status bits may be
increased to improve concurrency or decreased to reduce the
overhead.

C. Algorithm Description

Assume that a set of rules with version number n need to
be installed. The switches where the rules need to be inserted
are called the affected switches. current denotes the version
tag currently sent in packets and status is the half-byte that
denotes the status bits that the packets are tagged with.

The controller queues update requests from applica-
tions in app queue. The controller also maintains a table,
update table, which has the state of the update, for each

update. The update states are stage1-complete, “Commit
OK” sent, stage2-complete and “Discard Old” sent. The
updates that are queued are disjoint.

The message exchanges from E2PU-SRT are reproduced
below and alterations made where required for concurrent
updates.

1) The controller checks if there are messages from the
network, associated with an ongoing update. If there
are messages, it goes to the appropriate step below,
depending on the state of the update. If not, it checks
whether there are any update requests in app queue.
If there are any requests, it goes to step 2.

2) The controller retrieves the first update request from
app queue, gets the next available tag for this update,
say n, and sends “Commit” with the new rules to
all the affected switches. All the affected internal
switches (this could include the ingress switches that
receive rules by virtue of them acting as internal
switches for the other paths that belong to this update)
install the new rules into the SRT. The new rules are
such that they have higher priority than any version
lesser than n. The ingress switches do not yet install
either the rules that tag packets with n or the policy
rules of version n, but store them internally.

3) Each switch that processes “Commit” sends back
“Ready to Commit”.

4) After the controller receives “Ready to Commit” from
all the switches, it marks n as stage1-complete in
update table. It calls the procedure resume update()
to resume updates, which is described in detail in
section V-D. The procedure sends “Commit OK”, if
required, to all the ingress switches. The controller
also sends the value of the status bits to be sent, along
with the correct tag, in “Commit OK”. As soon as
the ingress switches receive “Commit OK” they stop
sending packets tagged with the previous version and
switch over to the new version. They also modify
the status bits in the packet header. Let us assume
that a “Commit OK” with n as the version is sent at
this stage. (It is possible that due to previous updates
not being stage1-complete, the update n is stalled, in
which case, “Commit OK” is not sent for version n).

5) Each ingress that processes “Commit OK” sends
“Ack Commit OK” to the controller. Each ingress
sends the current time with this message, called To.

6) After receiving “Ack Commit OK” from all the
ingresses, the controller notes the latest value of
To received and saves it as Tl. It marks n and its
companion updates that are not yet marked stage2-
complete, as stage2-complete, in update table. Now
it sends “Discard Old” to all the switches where rules
were either inserted or deleted or both, for update n
and its companion updates, unless already sent, as
indicated in update table. It sends Tl and the rules
to be deleted (old version) as a part of “Discard Old”.

7) After each internal switch receives “Discard Old”,
when the current time of the switch Tc > Tl + M ,
where M is the maximum lifetime of a packet within
the network, it does the following: a) it deletes the
list of old rules received in “Discard Old” 2) it sets
the version number field of the version n and its



Fig. 1. Algorithm to resume updates
1: procedure RESUME UPDATE() . Resumes

the next set of pending updates in update_table by
sending “Commit OK”.

2: size = Get number of consecutive updates from
current − 4, in increasing order, whose bits are set to
1, by checking status

3: if size 6= 0 then . The new window position is
current+ size

4: temp = Position where the first update less than or
equal to current+ size is stage1-complete

5: if temp > current then
6: current = temp
7: end if . Otherwise no change to current
8: end if
9: Update status by reading update table

10: if “Commit OK” not already sent for at least one of
current or companion updates then

11: Send “Commit OK” with current as the version
and status as the status bits

12: State of current and companion updates for which
the state is “stage1-complete” in update table = “Commit
OK” sent

13: end if . If “Commit OK” sent, do nothing
14: end procedure

companion updates to don’t cares. These rules may
be moved to the TCAM any time from now. The
ingresses delete the old rules as soon as they receive
“Discard Old”.

8) Each switch that processes “Discard Old” sends a
“Discard Old Ack”. When the controller receives
all the “Discard Old Ack” messages the update is
complete. The controller deletes the entries belonging
to the completed updates from update table. The
procedure continues from step1.

D. Resuming an update

Fig.1 shows the algorithm to send “Commit OK” for up-
dates that are stage1-complete and to move the status window,
if it is appropriate to do so.

The procedure first checks whether the status window can
be moved. For that, it determines the number of consecutive
updates in status, starting from the lowest version number,
that are stage1-complete, to know which updates can be
removed from status (line 2). Let the number be size. The
status window cannot be moved size bits because the version
current+ size may not be stage1-complete, as illustrated in
Fig.2. The updates marked “0” in the figure are not stage1-
complete and the the updates marked “1” are stage1-complete.
So the algorithm finds the first version less than or equal to
current + size that is stage1-complete (line 4). Now it sets
current to this value, as long as this is greater than current. If
there are no new updates that are stage1-complete and size is
non-zero, we just set the correct status bits to 1, with current
remaining the same.

If there are no consecutive updates that are stage1-
complete, size is 0 and the window cannot be moved at all, but
it is possible that some updates currently within the window

Fig. 2. Adjusting the status window

are stage1-complete and “Commit OK” needs to be sent for
those. It sets bits in status by determining the status from
update table. If, for at least one of the updates in current or
its companion updates, a “Commit OK” has not been sent, it
sends the “Commit OK” (line 10).

E. Behaviour at the data plane

When an internal switch receives a packet with version
number n, the internal switch attempts to match the packet with
a valid rule present in the SRT that has a version number less
than or equal to n. A rule is valid if the status bit associated
with the rule is set to 1 or its version is less than n − 4.
10 : 0110 indicates that the rules for update versions 10, 8
and 7, and 5 and below are valid for packets tagged with that
version number and status bits.

The ingresses tag all the packets with the same version
and set the same status bits, upon receiving “Commit OK”.
For ease of implementation, the instruction for tagging packets
with a version number and status bits may be separated from
the rest of the instructions for the packet (such as forwarding
to a port). A single rule tagging all packets with the desired
version number and status bits may be installed in a flow table,
implemented in software - thus only this instruction needs
change and can be changed quickly when a “Commit OK”
is received. All packets to an ingress may match the rule in
this table first. The packet may then be forwarded to the next
flow table in the ingress, which performs the rest of the actions
as required.

F. Handling Timeouts

The controller must start a timer after sending “Commit”,
for each version number n. If the timer times out without
receiving a “Ready to Commit”, the application must be
informed. The application must instruct the controller whether
to delete the installed rules or to proceed with additional
updates with the same version tag. This must be done to enable
later stage1-complete updates to proceed. This can be easily
accomodated in the algorithm, but for ease of exposition it is
not included.

G. Updating only the affected internal switches

A rule “tcp port=80, forward 2” needs to be inserted in
an internal switch S1, to reduce the load on another switch
S4, as shown in Fig.3. Let two adjacent switches S2 and
S3 also have new rules on account of this. The new path is
shown in solid lines and the old path in broken lines. Let the
version associated with this change be n. After the update is
stage1-complete, the switches between the ingresses and S1



Fig. 3. Updating only the affected internal switches

(not shown in the figure) match each packet with a rule whose
version field has a value less than or equal to n. When a
packet with tag n reaches S1, S2 and then S3, it matches a rule
with version n, which is the newly inserted rule. Subsequent
switches from S3 to the egress match this packet with rules
whose version fields are less than n. Thus switches without
genuine rule changes are not affected.

H. Analysis of the algorithm

Suppose a packet P is stamped with a version number n by
an ingress switch. Let the new path of the packet as prescribed
by the update n be Pn and let the old path be Po. Only the
switches that need a genuine rule change are updated with
rules that check for version n. On the rest of the switches the
old rules (which do not check for version numbers) are used.

Suppose the controller has decided that the update n, which
is stage1-complete, can proceed to the next stage. Now all the
ingresses start tagging packets with version number n. Suppose
the first internal switch that the packet P traverses is A and it
has a rule that matches version n. That rule is applied to the
packet. Similarly, all other switches along Pn that have rules
of version n will match that rule with P. If the next switch
on Pn is B and that does not have a rule of version n, P will
match a rule on B that does not check for a version. (A or B
cannot have a rule matching P that will check for a version less
than n, as such a rule would indicate an intersecting update in
progress, which the algorithm does not support.)

Now let us examine what happens when the next update
n + 1 is stage1-complete. Let the set of packets affected by
update n be S. Packets belonging to S have the same set of
forwarding actions from the ingress to the egress. Let update
n+ 1 be such that it does not affect S. All the ingresses now
start stamping all packets with the version number n+ 1 and
with the status bit for n set to 1. A packet P belonging to S
will reach switch A. Let A have a rule that checks for version
n + 1 installed. Since P will not match the rule that checks
for version n + 1 (since update n + 1 does not affect P) and
will match only the rule that checks for version n, the switch
will check if the status bit associated with n is set to 1 in P.
Since it is, the switch A continues to match P with the rule that
checks for n. On switches similar to A, the same behaviour
will follow. In switch B, there may be a rule that checks for
version n + 1, but again, P will not match that rule. It will
continue to match the rule that does not check for a version
number, on B and switches similar to B. The behaviour is
similar when the ingresses start stamping packets with version
numbers greater than n+ 1.

What happens to the packets belonging to S, before the
update n is stage1-complete? They have version numbers less

than n. Hence even after version n rules are installed, they will
not match those rules. These are the old packets that take the
path Po. They get switched along Po using the old rules that do
not check for a version number and continue to get switched
along that path even after update n is installed, thus preserving
PPC. These old rules get deleted only after Tc > Tl +M , by
which time, all the old packets would have exited the network
- therefore no old packet is dropped.

Thus the new packets belonging to S, regardless of their
version numbers, get switched exclusively along the path Pn

and the old packets exclusively along the path Po, preserving
PPC. If the paths overlap, the same rules are used by the
switches in the overlapping region, but that does not violate
PPC.

The status bits indicate to the internal switches the versions
of the rules that are not yet stage1-complete and therefore must
not be used. Since only 4 bits are used, there can be a gap of
utmost 4 updates that are not stage1-complete between two
stage1-complete updates n+5 and n. If updates n+1 through
n+4 are not stage1-complete and update n+5 is, update n+5
can proceed to the next stage, by setting all the four status bits
to 0. However, if update n+6 becomes stage1-complete next,
then it cannot proceed to the next stage unless update n is
stage1-complete, thus limiting concurrency. If the size of the
status window is set to 5 bits, then update n+6 can proceed.
Thus by changing the size of the status window, concurrency
can be improved.

VI. RELATED WORK

An update algorithm called CCG [11] uses fast concurrent
update methods but only preserves properties that are not as
strict as PPC and falls back to a two-phase update (2PU) [7] for
these cases: 1) If an update affects multiple ECs, calculating
the paths affected by the update becomes time-consuming 2) If
all paths must traverse n waypoints, the old and the new paths
can be thought of to consist of n-1 segments. The update of a
new segment may depend on the update of an old segment. 3)
If properties such as path length constraints need to be met.
[19] provides an algorithm that complies with the property
of relaxed loop freedom (RLF), which ensures that there are
only transient loops during the update, that there are no loops
between the source and the destination, that new packets do
not loop and that only a constant number of packets loop.
This algorithm finds the minimum number of rounds required
to update a network, preserving RLF and without using tags.
While this does not prevent concurrent disjoint updates, though
it is not explicitly addressed, it is unclear if this is faster than a
regular 2PU, especially if the network is large; also, it does not
preserve PPC. Dionysus [20] preserves PPC and is concurrent,
but works only when any forwarding rule at a switch matches
exactly one flow. It does not work where the network uses
wildcard rules or longest-prefix matching.

Statesman [21] has mechanisms to identify conflicts with
the existing network state, with requests from other apps and
with dependencies, and resolve them. [22], [23] and [12]
deal with various ways of conflict resolutions for concurrent
updates. While the emphasis of these efforts is conflict detec-
tion and resolution, we are looking at concurrent installations
of updates that are already identified as non-conflicting, and
preserving PPC.



Frenetic [24], a high-level language for writing network
programs, supports functions that a program can call to com-
pose non-conflicting rules and ultimately updates the network
using 2PU [25]. NetKAT [26] , which is more powerful,
supports a “slicing” [27] abstraction using which conflicting
rules can be run on different slices of the network, which, at
the physical level, just uses different tags. In both the cases, the
emphasis is on conflict resolution and composition of policies
within a program whereas we envisage CCU to be able to
handle disjoint updates from any source, even from multiple
controllers, at a level close to the switches.

[28] describes two algorithms, FIXTAG and REUSETAG,
for fault-tolerant updates, when multiple controllers are present
in a network. While FIXTAG allows fault-toleant concurrent
updates, the tag complexity is exponential in the network size
and therefore not practical, whereas REUSETAG reduces tag
complexity but allows only sequential updates.

VII. CONCLUSIONS AND FURTHER WORK

The paper describes an algorithm to perform concurrent
disjoint updates that preserves per-packet consistency and that
works for all scenarios, for an SDN. We observe that, increas-
ing one or more of these overheads improves concurrency:
overhead bits in the packet, processing in the switch or the
number of messages. We note that the algorithm presented
will work well if each concurrent update takes roughly the
same amount of time. Therefore it must be examined whether
updates can be sized in that manner. We also plan to implement
this to understand the tradeoffs and compare the performance
of a basic 2PU with this algorithm. A scheme to allow
intersecting updates to also be applied concurrently is under
development.

REFERENCES

[1] N. Feamster, J. Rexford, and E. W. Zegura, “The road to
SDN: an intellectual history of programmable networks,” Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014. [Online].
Available: http://doi.acm.org/10.1145/2602204.2602219

[2] S. Shenker, M. Casado, T. Koponen, and N. McKeown, “A
gentle introduction to SDN,” 2012. [Online]. Available: http:
//tce.technion.ac.il/files/2012/06/Scott-shenker.pdf

[3] Open Networking Foundation, “Openflow switch
specification version 1.5.0,” 2014. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.pdf

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: experience with a globally-deployed software
defined WAN,” in SIGCOMM. ACM, 2013, pp. 3–14.

[5] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram et al., “Network virtual-
ization in multi-tenant datacenters,” in Networked Systems Design and
Implementation, 2014.

[6] A. Greenberg, “Windows azure: Scaling SDN in the public cloud,” in
ONS 2013, 2013. [Online]. Available: http://www.opennetsummit.org/
pdf/2013/presentations/albert\ greenberg.pdf

[7] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM 2012. ACM, 2012,
pp. 323–334.

[8] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow
in software-defined networks,” in Proceedings of the third workshop on
Hot Topics in Software Defined Networking 2014. ACM, 2014, pp.
175–180.

[9] R. Sukapuram and G. Barua, “Enhanced algorithms for consistent net-
work updates,” in IEEE Conference on Network Function Virtualization
and Software Defined Networks. IEEE, forthcoming-2015.

[10] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: verifying
network-wide invariants in real time,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[11] W. Zhou, D. Jin, J. Croft, M. Caesar, and B. P. Godfrey, “Enforcing
customizable consistency properties in software-defined networks,” in
NSDI 2015. Oakland, CA: USENIX Association, May 2015, pp. 73–
85.

[12] A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma, Y. Turner, C. Liang,
and J. C. Mogul, “Democratic resolution of resource conflicts between
SDN control programs,” in CoNEXT 2014. ACM, 2014, pp. 391–402.

[13] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “Openvirtex: Make your virtual SDNs
programmable,” in Proceedings of the third workshop on Hot topics
in software defined networking. ACM, 2014, pp. 25–30.

[14] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang,
“Meridian: an SDN platform for cloud network services,” Communi-
cations Magazine, IEEE, vol. 51, no. 2, pp. 120–127, 2013.

[15] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in CoNEXT 2011. ACM, 2011,
p. 8.

[16] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
2010, vol. 10, 2010, p. 19.

[17] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[18] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller, M. Caesar, J. Rex-
ford, and D. Walker, “Transparent, live migration of a software-defined
network,” in Proceedings of the ACM Symposium on Cloud Computing.
ACM, 2014, pp. 1–14.

[19] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good network
updates for bad packets: Waypoint enforcement beyond destination-
based routing policies,” in Proceedings of the 13th ACM Workshop on
Hot Topics in Networks. ACM, 2014, p. 15.

[20] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in SIGCOMM 2014. ACM, 2014, pp. 539–550.

[21] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin, “A
network-state management service,” in SIGCOMM. ACM, 2014, pp.
563–574.

[22] J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee, J. Mudigonda,
P. Sharma, and Y. Turner, “Corybantic: Towards the modular compo-
sition of SDN control programs,” in Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks. ACM, 2013, p. 1.

[23] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An API for application control of SDNs,”
in ACM SIGCOMM Computer Communication Review, vol. 43, no. 4.
ACM, 2013, pp. 327–338.

[24] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ACM SIGPLAN Notices, vol. 46, no. 9. ACM, 2011, pp. 279–291.

[25] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P. Katta,
C. Monsanto, J. Reich, J. Rexford, C. Schlesinger et al., “Languages for
software-defined networks,” Communications Magazine, IEEE, vol. 51,
no. 2, pp. 128–134, 2013.

[26] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” ACM SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[27] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in Proceedings of
the first workshop on Hot topics in software defined networks. ACM,
2012, pp. 79–84.

[28] M. Canini, P. Kuznetsov, D. Levin, S. Schmid et al., “A distributed
and robust SDN control plane for transactional network updates,” in
INFOCOM 2015, 2015.




