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Abstract—The basic algorithm that consistently updates the
switches of a Software Defined Network while preserving the up-
date property of per-packet consistency is the two-phase update.
The two-phase update is underspecified on two matters: 1) how to
detect when the last packet of the old rule set has left the network
and therefore exactly when to delete the old rules 2) recoverability
of the update. Recoverability ensures that those updates for
which the two-phase algorithm is not completely executed do not
change the semantics of those updates for which the algorithm
is completely executed. This paper examines the failures that
can occur during an update and how to handle a subset of
those failures. It proposes an algorithm, enhancing the two-phase
update to handle deletion of old rules and recoverability. It also
specifies how to effectively use a software cache to supplement the
TCAM, during an update. The paper extends the same algorithm
for per-flow consistent updates, using a restricted number of
exact-match rules for existing flows and specifying when to delete
the exact-match rules. The two algorithms are also specified for
switches that do not support a software cache. The paper also
analyzes the algorithms quantitatively, identifying the parameters
of interest and what they depend upon.

I. INTRODUCTION

Dynamically updating the rules installed on a switch is
central to a Software Defined Network (SDN). The two-phase
update [1] is a basic algorithm that updates the switches
of an SDN, while maintaining the property of per-packet
consistency. In a per-packet consistent update (PPC), any
packet entering the network is either forwarded using the old
version of the rules or the new version and never a mixture
of both. Similarly, in a per-flow consistent update (PFC), all
packets belonging to a flow are either forwarded using the
old version of rules or the new version of rules, but not a
mixture of both. A flow is a sequence of packets where each
packet has the same values for the following headers: source
IP address, destination IP address, source port, destination
port, ingress input port and protocol and where each packet
in the sequence is not separated by more than n seconds.
The value of n depends on the protocol [1]. We describe the
problems of existing algorithms for PPC and PFC and propose
enhancements to those algorithms that solves those problems.
We also provide a quantitative analysis on the performance of
the enhanced algorithms, identifying the parameters of interest
and what they depend upon. We assume Openflow switches [2]
to keep the descriptions concise.

II. PER-PACKET CONSISTENT UPDATES

A. Two-phase update

Consider an SDN whose switches have a set of rules of
version 0 (v0) that needs to be updated to version 1 (v1). As
per the two-phase update process, the ingress switch always
tags packets with the version number of the rule that must
be applied on the packet, and the switches other than the
ingress, called the internal switches, check each packet for
the corresponding version tag before applying a rule.

The two-phase update from v0 to v1 is implemented as
follows: The controller updates the internal switches with v1
rules while the v0 rules remain in the switches. Next, it updates
the ingress switches with v1 rules. This also results in the
ingress switches tagging all matching packets to indicate that
they belong to v1. After the last v0 packet has left the network,
the controller instructs all the ingress and internal switches to
delete the v0 rules [1].

If an update is not PPC, packets may be dropped or they
may loop. Manually finding an update sequence of switches
that does not cause packet drops or loops and programming
the network in that sequence is a difficult task [1].

B. Under-specification of two-phase update

Lack of update recoverability: Updates may fail and
failures may be due to any of the following causes during
the update: F1) A switch fails and stops. F2) A switch fails
and restarts but without any rules in it1. F3) A link to a
switch fails. F4) A switch operates very slowly. F5) A message
is not delivered correctly or not at all. F6) A switch has
unsupported features, receives wrong instructions, the flow
table is full etc. and the switch responds with an error message
during the update. F7) Due to software bugs, a switch exhibits
unpredictable behaviour (hangs, does not install updates, sends
wrong messages, reboots, corrupts existing rules etc.). F8) A
switch exhibits malicious behavior.

Updates to an SDN can be frequent - [3] proposes a fine-
grained traffic engineering mechanism for data centres that
involves updating switches at the granularity of seconds. [4]
proposes updates every few minutes and SWAN [5] proposes
updates as frequently as possible, to achieve high WAN utiliza-
tion. If the network is updated based on the current workload,

1Since switches do not have any non-volatile storage, no rules are perma-
nently stored. The controller will need to repopulate the switches.



changing workloads would necessitate frequent updates in the
data center [6], for dynamic flow scheduling. Since the update
rate is high, if there is a failure, it is likely that a failure
coincides with an update.

If there are failures, we need to limit the effects due to
failures on the update process. The two-phase update does not
address recoverability of an update. By recoverability of an
update, we mean that either an update must be completely
installed on all the switches or none of the updates must
be installed; the update must never be partially installed.
Recoverability ensures that those updates where the two-phase
algorithm is not fully executed do not change the semantics
of those updates where the algorithm is fully executed (after
[7]). For example, if the link to a switch S1 fails temporarily
during a v1 update and the v1 update did not occur on S1,
it must not happen that the rest of the switches upgrade to
v1 when S1 has v0 after the failed link comes up. However,
the algorithm does not specify a mechanism for the controller
to ensure this. If a switch fails to update, the controller does
not have the means to know that there has been an update
failure. Moreover, in that case, what is to be done with the
rest of the updates that have already occurred? Another issue
is that if the rules on switches where they are already installed
need to be deleted, it wastes a lot of time as writing into and
deleting from TCAM is time consuming. The controller must
know the list of valid updates active on the network. The use
of tagging automatically ensures that the update is versioned
and the switch stores the previous version; however the current
update algorithm has no mechanism to ensure a rollback.

It is not within the scope of the update process to attempt
complete recovery from failures because, if there is an update
failure, the next action to take is very application specific.
Hence the update process must only limit the effects due to
failures. For example, if the v1 update was to rereoute packets
through a switch S2 instead of S1 due to a policy change,
and S2 fails during the update, then the application may want
to just abort the update. On the other hand, if there is a
routing update which changes the ingress to egress path, if
a switch fails on the new path while it is being updated
to v1, the application may want to instruct the controller
to suspend the ongoing update and resume it in a modified
manner, taking advantage of the switch updates that may have
already occurred for v1.

There is existing work to provide an abstraction to develop
programs that implement fault tolerance in the network [8],
algorithms to implement local fast failover [9], [10], re-design
of the controller to reduce fate-sharing between apps and the
controller [11] etc. but none on failure during an update itself.
In the absence of actual data on the frequency of failures, soft-
ware must try to provide as much protection as possible. This
helps hide some of the failure complexity from applications
and architects can choose hardware that improves overall cost,
in the context of a data center [12]. It may also be possible
to use hardware from different vendors more easily, which is
one of the goals of SDN. Also, as argued for server failures in
[12], it “simplifies a broad class of operational procedures”.
For example, switch software upgrades or shutting down a
switch can happen during normal operation, without special
procedures; handling failures during updates is a movement in
this direction.

In addition to the above, unrelated to failures and recovery
from failures, applications may wish to abort an ongoing
update. Such an abort is meaningful only if it takes place
before the ingress switch updation is complete. Otherwise, the
application has to issue a new update to take the network to
the desired state.

Time of deletion of old rules is unspecified: A rule
belonging to an older version must be deleted only when the
switch is certain that no packet belonging to the older version
exists either within the switch or upstream from the switch.
Otherwise, packets belonging to the older version will be
dropped, violating the property of drop-freedom. But deleting
a rule cannot be indefinitely delayed because TCAM space is
scarce.

Since the controller monitors information in the switch on
a per-rule basis and not on a per-flow basis, it does not have
any means to know whether there are active flows associated
with a (wild-carded) rule before it issues a delete command for
that rule. An internal switch knows whether there are active
flows associated with a rule, but it does not have a mechanism
to know if the packet it has received is indeed the last packet
belonging to v0. Though many networks use load balancing
schemes that use the same path for all packets of a flow and
distribute different flows over different links, there are schemes
that are proposed that send different packets of the same flow
over different links [13]. In such cases a switch may not know
if the last packet belonging to v0 will be sent to it at all. One
of the ways to solve this is for the controller to ensure that
the last packet has crossed the switch, before it sends a delete
command to that switch.

It is possible to associate an inactivity timer with each
old rule such that the rule is deleted if it is not accessed in
the specified time. The timer value depends on inter-arrival
times between packets, which could vary depending on delays
in switches, which perhaps vary due to congestion, or paths
that packets traverse, which could vary due to complex load
balancing schemes. More than the value of the timer being
unpredictable and variable, the issue is that an internal switch
can never be certain that there are no packets upstream even
if the timer has expired, if the timer is only associated with
accessing the rule. It is desirable to have a mechanism to delete
the old rule set independent of the above considerations.

C. Usage of Software Rules Table

Since TCAM space is scarce, it is desirable to use a
software cache to supplement the TCAM such that rules are
installed both in the TCAM and in a rules table implemented
in software, called the Software Rules Table (SRT), a model of
which is described in [14]. Since switching in TCAM is faster,
all high priority rules can be periodically moved to TCAM and
the remaining rules can be in the SRT. Adding (removing) rules
to (from) a TCAM incurs considerable overhead [15], while
doing the same to an SRT is faster.

D. Enhanced 2 Phase Update with SRT (E2PU-SRT)

E2PU-SRT addresses failures F1 through F6 and the other
issues identified in section II-B, while preserving the update
property of per-packet consistency.



The switch on which a rule needs to be inserted or modified
is called an affected switch.

1) The controller sends “Commit” with the new rules
to all the affected switches. All the affected internal
switches (this could include ingress switches that
received rules by virtue of them acting as internal
switches for other paths that belong to this update) in-
stall the new rules into the SRT. The ingress switches
do not yet install the rules that tag packets with v1
or policy rules, but store them internally.

2) Each switch that processes “Commit” sends back
“Ready to Commit”.

3) The controller receives “Ready to Commit” from all
the switches and then and only then sends “Commit
OK” to all the affected switches. As soon as the
ingress switches receive “Commit OK” they stop
sending packets tagged v0 and switch over to v1.
After receiving “Commit OK”, a switch may move
the v1 rules to TCAM at any time.

4) Each switch that processed “Commit OK” sends “Ack
Commit OK” to the controller. Each ingress switch
sends the current time with this message, called To.

5) After receiving “Ack Commit OK” from all the
affected ingresses, the controller notes the latest value
of To received and saves it as Tl. Now it sends
“Discard Old” to all the switches where rules need to
be deleted. It sends Tl and the v0 rules to be deleted
as a part of “Discard Old”.

6) When each internal switch receives “Discard Old” it
deletes the list of rules received in “Discard Old”,
whenever its current time Tc > Tl +M , where M is
the maximum lifetime of a packet within the network.
The ingresses delete immediately.

7) Each switch that processes “Discard Old” sends a
“Discard Old Ack”. When the controller receives
all the “Discard Old Ack” messages the update is
complete.

The v0 rules can be in the TCAM or the SRT, for the
internal switches. However, the algorithm assumes that the v0
rules are in the SRT, for all ingresses. If they are in the TCAM,
upon receiving “Commit”, those ingresses must install v1 rules
in the SRT, at a lower priority. Then, upon receiving “Commit
OK”, they must delete the v0 rules from the TCAM. This
variation is referred to as E2PU-SRT’.

It is possible to implement sending and acknowledging a
message in Openflow using the barrier command [2].

After Tl, no v0 packets are injected by any ingress into the
network. After M units of time after that, all the v0 packets
that were in the network would have left it. Therefore deleting
v0 rules at this point will not cause any packet to be dropped.

Handling Failures and Application Aborts:2 If one (or
more) of the switches is unable to process a “Commit” due
to any of the failures F1 through F6 in section II-B, the
controller will not receive “Ready to Commit” at all, or on
time. Similarly, the controller may not receive “Ack Commit
OK” from some ingresses. The controller now performs the
following actions for this update: 1) suspend the update 2)

2Unlike DBMS updates, a failure will not block the update

preserve the tag used for the current update 3) inform the
application. The application can choose to abort the update, in
which case the controller aborts the update. Since v1 rules are
stored in the SRT, deleting them will not be time consuming.
The application, instead of aborting the update, may send some
modifications to the update, such as addition or deletion of
rules to new or existing switches. In that case, the controller
sends a “Commit” for adding v1 rules, using the tag preserved
for this application. It appends the delete commands meant for
the v0 rules and the delete commands for the completed v1
rules, if any, to the list of rules to be deleted (later, using
“Discard Old”). The switches may thus receive more than one
“Commit” and “Commit OK” messages with the same tag,
before receiving a “Discard Old”. If there is a failure after the
controller receives “Ack Commit OK”, the application must
issue a new update, if required. If the application requests the
controller to abort the update before the controller has received
all the “Ack Commit OK” messages, the controller aborts the
update. If the controller aborts the update, all v1 rules are
deleted.

Alternate Designs for Deleting the Old Rules: It is
possible for the controller to wait for an additional time of
M after receiving the acknowledgement from the last ingress
switch and then send a message to all the switches requesting
them to delete the old rules immediately. However, the last
ingress switch may take some time to send “Ack Commit OK”
to the controller, because it is far away from the controller or
because the switch is just slow. Each internal switch only needs
to wait until its time exceeds Tl+M , which is faster than the
controller waiting for M units of time after it receives the last
“Ack Commit OK”. It is possible to further optimize this by
the controller sending “Discard Old” messages as soon as it
receives “Ack Commit OK” from an ingress, to all the internal
switches that accept v0 packets only from that ingress. This
needs further exploration.

III. PER-FLOW CONSISTENT UPDATES

A. Challenges in PFC

When the controller instructs the ingress to switch to v1,
some of the old v0 packets are very likely to be present in
the network. It is possible that they reach the egress switch
later than the new packets tagged with v1, as the v0 packets
may follow a different path. Switches take a lot of care not
to re-order packets [16], but updates could result in packets
that are re-ordered, causing performance degradation [17] and
if updates need to be performed frequently, the impact will be
severe. This is one of the reasons for needing a PFC. Another
reason is that a load balancer splits packets destined to a single
server across multiple servers, by restamping the destination IP
address of every received packet. It determines the destination
address depending upon the rule installed in it, which usually
allocates the destination address based on the source address of
the packet. During an update to a load balancing switch [18],
connections existing at the time of the update will be broken
unless the update is per-flow consistent. Finally, applications
will also need PFC; for example, a policy change that drops
packets may disrupt a large file transfer.

For a PFC, the affected flows must complete without any
disruption due to the update, regardless of the duration of the



flow or the flow rate and these flows must not switch over
to the new version of the rule. At the same time, new flows
that originate after a certain stage in the update must follow
the new version of rules. Ingress switches need to know when
the affected flows will stop and they cannot switch over to v1
tagging like in PPC. Internal switches need to delete old rules,
but the method used in PPC will not work as v0 packets may
continue to come from existing flows while packets of new
flows may be tagged as v1. So only when all old flows have
ceased, can an internal switch delete v0 rules.

B. Existing Algorithms

In order to keep track of each individual flow, a microrule
is added for each flow, where the match for the rule is based
on the header fields that uniquely identify a flow. A time-
out is associated with each microrule which is triggered when
no matches take place for the time-out period and a suitable
associated action is taken. The microrule is an exact copy of
the original rule, except that its headers match exactly that of
a flow.

Devoflow [19] proposes a switch that can support a “clone”
command and usage of this to support PFC is examined in
[1]. When this command is set for a rule with wildcards in
an ingress switch, the switch installs a microrule for each new
header seen that signals a new flow. Subsequent packets of
that flow match that microrule. The algorithm uses clone rules
when any update is installed. Thus, for example, all v0 rules
are clone rules. This results in v0 microrules being generated
and installed for every flow, right after the v0 update. To update
with v1 rules, they are installed and they too are made clone
rules; v0 rules are deleted at the same time. Now a new flow
will create a new microrule and v1 rules will apply while old
flows will match their existing microrules and so v0 rules will
apply. This method has the following issues: 1) Microrules are
always present and so the overheads of these microrules will
affect the performance of a switch 2) It is unclear when the
microrules get deleted 3) As in PPCs, when the old rules are
deleted is unspecified and in the absence of acknowledgements
from the switch, the update installation may be unrecoverable.

[18] provides two solutions for updating a load balancer.
In the first solution, assume that all packets from source IP
address 0* need to be sent to server replica R2, instead of
replica R1. During the update, the controller installs transition
rules that direct all 0* packets to the controller. The controller
examines the next packet of all 0* connections - if it is a SYN,
it is a new connection; otherwise, it is an existing connection.
The controller then installs microrules with soft timeouts, that
direct the new connections to R2 and the old connections to
R1. The controller examines 0* packets for 60 seconds to see
if there is any missed connection ; if not, it installs the rule
that directs 0* to R2, at a lower priority than the microrules.
In the second solution, the controller first installs the new rule
that directs all traffic to R2, at a lower priority. Next, it installs
temporary rules with inactivity timeouts, dividing the address
space of 0* into several parts that direct all the traffic to the
old replica, at a higher priority, and deletes the old rule. Upon
timeout, the temporary rules are deleted and the new rules take
effect. While the first solution has the disadvantage of loading
the controller, the second has the danger of some of the rules

never timing out due to new connections being continuously
established that match one of the temporary rules.

C. Enhanced Per-Flow Consistent Update with SRT (EPCU-
SRT)

In comparison with the first existing solution mentioned
above [1], the overhead of microrules is greatly reduced as
we restrict microrule generation between the switch receiving
a “Commit” and “Commit OK”. We also specify a method
to delete the microrules. Comparing with the first solution in
[18], our solution does not involve the controller and with the
second solution, we generate exact rules and take advantage
of the SRT to reduce concerns on rule space.

In switches with an SRT, the algorithm is as follows,
assuming one flow table:

1) The controller sends “Commit” with the new rules
to all the affected switches. All the affected internal
switches install the new rules into the SRT. The
ingress switches do not yet install the rules that tag
packets with v1 or policy rules but store the rules
internally. An ingress switch also enables microrule
creation. For every new header of a packet which
does not have a microrule, a new microrule for that
header is created.
When an ingress receives a “Commit”, the ingress
demotes the set of v0 rules to the SRT, if the rules
currently exist in TCAM. Next, if a packet matches
an old v0 rule, it installs a microrule for that flow in
the SRT, if one does not already exist, and associates
a timer with it that will time out and delete the rule
after Tg units of inactivity. These microrules have
higher priority than the old v0 rules. This process
continues until v1 rules are installed later.
If flows are assumed to be implemented by TCP,
then the following is added to each microrule. Along
with a match for the header fields associated with a
flow, FIN, ACK and RST are also matched (Openflow
v1.5.0 [2] supports this). Two variables are kept for
each microrule: FINreceived, and FINACKreceived.
When there is a FIN match, FINreceived is set to
true and if FINACKreceived is found to be set, the
microrule is removed as the flow has ended. If a
FIN and ACK both match, then FINACKreceived is
set and if FINreceived is already set, the microrule
is removed. Finally, if there is an RST match, the
microrule is deleted. If a microrule is not removed
by the above matches, then it is removed when
the timeout associated with it is triggered. This is
discussed further in III-D.

2) All the ingress switches and the switches that have
acted upon “Commit” send back “Ready to Commit”.

3) The controller receives “Ready to Commit” from all
the switches and then and only then sends “Commit
OK” to all the switches. As soon as the ingress
switches receive “Commit OK”, they stop generating
further microrules. They insert v1 rules in between
the v0 microrules (which have the highest priority)
and the old v0 rules (which have the lowest priority).
After receiving “Commit OK”, an internal switch



may move the v1 rules to TCAM at any time. All
new flows now use v1 rules.

4) Each ingress switch sends “Ack Commit OK” only
after all its v0 microrules are removed. The internal
switches send “Ack Commit OK” soon after receiv-
ing “Commit OK”. Each ingress switch sends “Ack
Commit OK” to the controller with the current time,
called To. After all the v0 microrules are deleted, an
ingress switch may move the v1 rules to TCAM at
any time; however, it is not necessary to do so.

5) After receiving “Ack Commit OK” from all the
affected ingresses, the controller notes the latest value
of To received and saves it as Tl. Now it sends
“Discard Old” to all the switches where rules need to
be deleted. It sends Tl and the v0 rules to be deleted
as a part of “Discard Old”.

6) When each internal switch receives “Discard Old”,
it deletes the list of rules received in “Discard Old”,
whenever its current time Tc > Tl +M , where M is
the maximum lifetime of a packet within the network.
The ingresses may delete immediately.

7) Each switch that processes “Discard Old” sends a
“Discard Old Ack”. When the controller receives
all the “Discard Old Ack” messages the update is
complete.

If a load balancer requires an update from v0 to v1, we
assume that the load balancer is an internal switch that requires
an update and we proceed with the update as outlined above.
If multiple, pipelined flow tables exist, the algorithm can be
modified to handle them. It is not described here due to space
constraints.

D. Value of the Microrule Expiry Timer Tg

This value will be protocol dependent. However, if we
assume TCP, as per the TCP protocol definition ([20] and
[21]), a connection can remain alive without any upper limit
on idle time. However, in practice, most implementations have
time-outs, which if triggered, results in the connection being
dropped. So the microrule timer should expire when there are
no packets on the connections for this amount of time. Since
such time-outs are large compared to network time to live
(linux implementations have a maximum keep-alive duration
of 75 seconds, implying that a connection will get closed if
there is no activity for 75 seconds), problems of re-ordering of
packets and of broken connections due to load balancing will
be taken care of.

E. Long-lived Flows

Every update need not be a PFC update. Data centers may
have flows that are so long that waiting for them to complete
during an update may render the rest of the update useless. For
long-lived flows, applications must not instruct the controller
to use a PFC update when such flows are affected by the
update. Alternately, applications may exclude such flows from
the update. However, it may be required to do a PFC update
for such a flow - for example, an application wishes to install
a policy change that affects a long-lived flow (or a set of long-
lived flows), but the flow must not be disrupted and the policy
change must be effective as soon as the flow is completed.
In such cases, the application must first install a separate rule

TABLE I. SYMBOLS USED IN THE ANALYSIS

Tc1 Time at which the controller sends “Commit”

δ The message transmission time between the controller and a switch

tu The time taken to insert rules in a switch

td The time taken to delete rules from the SRT

tdt The time taken to delete rules from the TCAM

ts The time for which a switch waits after it receives “Discard Old” and
before it deletes rules

tuµ The time required after receiving a “Commit OK” to install (and
delete) the microrules pending installation (and deletion), if any

tµ The time that the ingress waits until all its remaining microrules get
deleted, after installing v1 rules

no The number of old rules that need to be removed

nn The number of new rules that need to be added

ni The number of new rules that need to be added to the ingress, to meet
its ingress functions

ko The number of switches where new rules do not need to be installed
but old rules need to be removed

kn The number of switches where only new rules need to be installed
(this includes such ingresses too)

kc The number of switches where old rules need to be removed and new
rules need to be added (this includes such ingresses too)

ki The number of ingress switches where new rules need to be installed

for the long-lived flow, which is of higher priority than the
general rule (if a separate rule does not already exist). Now
it must do the desired PFC update, with only this flow. [6]
and [19] provide mechanisms to identify long-lived flows. In
the internet, applications like BitTorrent have permanent TCP
connections that use keep-alive timers during their idle time
[22] - PFC updates are not meaningful for such flows.

IV. SWITCHES WITHOUT AN SRT

If the switches in a network do not have an SRT, when
an internal switch receives a “Commit” with the new rules,
it installs the rules in the TCAM and sends back “Ready to
Commit”. The controller, on receiving “Ready to Commit”,
need send “Commit OK” to only the ingresses. The ingresses
install the new v1 rules in the TCAM. The rest of the algorithm
remains the same. In the case of a PFC, since the microrules
also get installed in the TCAM, the usage of TCAM becomes
very high and the update becomes slow. Also, if the controller
wishes to abort the update, the switches that have already
installed the rules need to incur the overhead of deleting them
from the TCAM. Section V mentions further comparisons.

V. ANALYSIS OF THE ALGORITHM

The parameters of interest during a PPC are: 1) Parameter
1: Duration for which the old and new rules exist at each
type of switch 2) Parameter 2: Duration within which new
rules become usable 3) Parameter 3: Message complexity -
the number of messages required to complete the protocol 4)
Parameter 4: Time complexity - the total update time and 5)
Parameter 5: Duration for which microrules are present at the
ingress (relevant only for PFC). Parameters 3 and 4 are along
the lines of complexity measures in distributed systems [7] .

The purpose of the analysis is to understand what the above
depend upon.

The symbols used in the analysis is as per Table I. It is as-
sumed that the time taken for the sum of the propagation times
and switch delays between the controller and the switches is



TABLE II. ANALYSIS OF PPC AND PFC

Parameter E2PU-SRT E2PU-SRT’ EPCU-SRT EPCU-SRT’
1, Case 1.1 2δ + td 2δ + tu + tdt 2δ + tµ + td 2δ + tµ + td
1, Case 1.2 4δ + tu + td 2δ + tdt 4δ + tu + tuµ + tµ + td 4δ + tu + tuµ + tµ + td + tdt
1, Cases 2,3 NA NA NA NA
1, Case 4 4δ + tu + ts + td 4δ + tu + ts + td + tdt 4δ + tu + tuµ + tµ + ts + td 4δ+tu+tuµ+tµ+ts+td+tdt
2 3δ + 2tu 3δ + 2tu + tdt 3δ + 2tu + tuµ 3δ + 2tu + tuµ + tdt
3 2ko + 6kc + 4kn 2ko + 6kc + 4kn 2ko + 6kc + 4kn 2ko + 6kc + 4kn
4 6δ + 2tu + ts + td 6δ + 2tu + ts + td + tdt 6δ+ 2tu + ts + td + tuµ + tµ 6δ+2tu+ts+td+tuµ+tµ+

tdt
5 NA NA 2δ + 2tu + tuµ + tµ 2δ + 2tu + tuµ + tµ + tdt

uniform (δ). Let the time taken for all insertions (tu) and
deletions (td) be uniform and let the processing time at each
switch be negligible. The time at which the last switch sends
“Ready to Commit” is Tc1+δ+tu, assuming the sum denotes
the longest time taken. Let the number of rules that need to be
removed (no), added to switches in general (nn) and added to
the ingress to meet its ingress functions (ni) be uniform across
switches.

We need to consider different kinds of switches while
evaluating various parameters: Case 1) ingress switches, with
Case 1.1 where the ingress switch is not an internal switch and
Case 1.2 where the ingress switch is also an internal switch,
Case 2) internal switches where new rules do not need to be
installed but old rules need to be removed, Case 3) internal
switches where only new rules need to be installed and Case
4) internal switches where old rules need to be removed and
new rules need to be added. For Case 1.2, to simplify the
presentation, it is assumed that there are no old internal rules
to be deleted. For all ingresses, it is assumed that old ingress
rules need to be removed and new ingress rules added.

For PFC, the ingress starts generating and updating the
SRT with microrules from when it receives a “Commit” until
it installs v1 rules. During this interval, it is possible that some
microrules get deleted too. Let us assume that it takes tuµ
more units of time after receiving “Commit OK” to install
(and delete) the microrules pending installation (and deletion),
if any, in the SRT, before it starts installing v1 rules. tu is the
time that the ingress takes to install v1 rules. Let tµ be the
time that the ingress waits until all its remaining microrules
get deleted, after installing v1 rules. So there is an additional
amount of time tuµ + tµ that the ingress incurs between it
receiving “Commit OK” and before it sends “Ack Commit
OK”, compared to E2PU-SRT. Let there be nµ microrules in
the switch, just before the v1 rules are installed.

Table II captures all the parameters for a PPC and a PFC.
For PFC updates, the new rules are considered usable even
when microrules are present (parameter 2). If v0 rules of an
ingress are in the TCAM, all the timing related parameters
worsen and are shown under E2PU-SRT’ and EPCU-SRT’.

Observations: 1) For networks without an SRT, parameters
1,2 and 4 worsen because the values of tu and td increase
significantly, though the formulae remain the same. However,
the number of messages used reduces to 2ko+4kc+2kn+2ki.
2) If v0 rules for all the switches are in the SRT, the parameter
values reduce as td reduces. If some of the internal switches
(but not ingresses) have v0 rules in the TCAM, their deletion
times will dominate parameters 1 and 4. 3) Since a mix of
rules in TCAM and SRT is going to be a practical scenario, to
reduce these parameters, mechanisms for fast deletions, such

as to disregard a rule from a switch by quickly marking it as
deleted and physically removing it later, must be considered. 4)
For small networks the update and delete times will dominate
δ and ts (the network diameter). For large networks, with all
rules in the SRT, δ and ts will have a larger influence on the
parameters. 5) If there are long-lived connections, tµ (this is
the time-out for a flow to be closed if there is no traffic) will
dominate all parameters - either they must be excluded from
updates or applications must use only short connections. 6)For
both PPC and PFC (with SRT), the new rules get installed
fairly quickly and the old rules are removed as soon as is
feasible.

VI. RELATED WORK

Detection of the last packet: [23] proposes a method that
reduces rule space in switches. zUpdate [24] and SWAN [5]
ensure that updates do not cause congestion. [25] provides a
dependency table that denotes at which switch a rule must be
modified to guarantee a consistency property, before it uses
a new rule. [26] proposes a method of creating a dependency
graph between rules such that their toplogical ordering is a safe
update. Dionysus [15] improves the update time. [27] provides
a mechanism to enforce customizable consistency properties.
None of these describes how and when to delete old rules. [28]
proposes a method to preserve rule space in switches during
updation and addresses the problem of identifying when the
old rules can be deleted, but the method is different from a
two-phase update. No paper addresses recoverability.

Per-flow consistency: [1] proposes associating a timeout
with the old rule, but the rule may never timeout if it is coarse.
The servers can send a list of active sockets or indicate the end
of a flow to the controller but this involves changes to servers.
Devoflow [19] proposes a switch that can support a “clone”
command and usage of this to support per-packet consistency
is examined in [1].[18] provides two solutions for updating
(only) a load balancer in a per-connection consistent manner.

Handling Faults: There is existing work to provide an ab-
straction to develop programs that implement fault tolerance in
the network [8], algorithms to implement local fast failover[9],
[10], re-design of the controller to reduce fate-sharing between
apps and the controller [11] etc. but none on failure during an
update or recoverability.

VII. CONCLUSIONS

The paper identified areas where the basic update algorithm
for SDNs is under-specified and described enhancements for
update algorithms for PPC and PFC, exploiting the availability
of an SRT. We also analyzed the algorithm quantitatively.



For real implementations, it is desirable that rules in every
switch in the network are not modified for every update. One
method to accomplish this is for the controller to identify
the exact paths affected by every rule change [29], whenever
practically possible, and modify switches only along those
paths. Another method is to modify only those switches where
there is a genuine rule change, by installing v1 rules always
in the SRT at a higher priority compared to the v0 rules
and matching with the rules in the SRT first. All ingresses
tag all incoming packets with v1. v0 rules do not check the
version numbers of packets. The version number field of v1
rules is set to don’t cares only when v0 rules are deleted. The
latter method is not incorporated in the algorithms for ease of
exposition.

Updates in a distributed system: How can concurrent
updates from a controller be executed on a network, ensuring
recoverability? What are the conditions under which updates
can create conflicts and how can they be resolved? Also,
handling system and communication failures need to be further
specified.

Optimizations: The update algorithms above can be fur-
ther optimized both in terms of speed of update and occupancy
of TCAM. There can be improvements in the algorithms
to move rules into and out of TCAMs into the SRT. Per-
flow consistent updates can be further optimized to use lesser
number of microrules.

Nature of updates: Policy updates and routing updates
have been treated the same way in the above discussion.
Since policy updates are large, how must they be handled?
Virtualisation, middleboxes and live VM migration will have
impacts on maintaining consistency properties during updates
and need to be further explored.
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