Recovery Protocols For Flash File Systems

Ravi Tandon and Gautam Barua

Indian Institute of Technology Guwahati,
Department of Computer Science and Engineering,
Guwahati - 781039, Assam, India
{r.tandon}@alumni.iitg.ernet.in
{gb}@iitg.ernet.in

Abstract. Supporting transactions within file systems entails very dif-
ferent issues than those in Databases, wherein the size of writes per
transaction are smaller. Traditional file systems use a scheme similar to
database management systems for supporting transactions resulting in
suboptimal performance. Ext[6] based file systems either involve dupli-
cation of blocks, resulting in a reduced write throughput or provide only
metadata consistency. The performance provided by a Log-structured
file system on traditional hard disk drives is poor due to non-sequential
reads that require movement of the read head.

This work presents an implementation of transaction support for log-
structured file systems on flash drives. The technique makes use of the
copy-on-write capabilities of the hitherto existing log- structured file sys-
tems. The major improvement is in the reduction in the overall write-
backs to the disk. We provide protocols for recovery from transaction
aborts and file system crash. The transaction support and recovery has
been implemented in a flash file system[1].

Keywords: File Systems, Recovery, Transactions

1 Introduction

A transaction can be defined as a unit of work that is executed in an atomic,
consistent, isolated and durable (ACID) manner. With the advent of larger, more
reliable and highly accessible systems, ensuring consistency of system data has
become a necessity for modern user applications. DBMS (Database Management
Systems) provide ACID properties to user applications through logging. How-
ever, databases do not provide uniform interfaces for supporting transactions.
Support for transactions at the File System layer can provide a generic solution
that can be used by any user level application.

Transaction support in file systems is provided through various logging tech-
niques. Atomicity and durability are ensured by write-ahead logging, wherein
updates are first made to the log. Each transaction has a start and a stop. Undo
and redo based logging techniques are used to recover from a crash. Redo based
recovery makes use of delayed writes, or the concept of aggregation of updates as
in Ext3 [6]. Isolation and consistency are ensured by having concurrency control

2 Ravi Tandon

mechanisms used for ensuring serializability of schedules. Strict 2 phase locking
scheme is widely used for ensuring consistency.

Logging schemes such as those used in Ext3 have two copies of data (one copy
in the journal and the other copy in the actual file). This leads to a decrease in
the bandwidth usage of the storage disk. Metadata logging schemes reduce the
writes to the log, but fail to ensure complete transaction semantics can only be
used to ensure consistency of a file system after a crash. Atomicity for instance
might not be guaranteed by such a scheme. Other file systems such as the Log-
structured file system have improved the write speed to the disk, by having
sequential writes. Reads, however, are affected due to non-sequential storage of
a files data. With the advent of new technology, such as Flash Devices, non-
sequential write and read speeds have improved considerably. Also, the inherent
copy-on-write nature of flash devices suits a log-structured file system well. Such
a file system extends naturally to a transactional file system. Log-structured file
systems provide easy crash recovery.

Our work focuses mainly on the recovery aspects in a log-structured file
system designed for flash based storage devices. Our file system is based on a
client-server architecture. The client runs the user application program and the
server runs the file system operations. We have designed protocols for recovery
from crashes on the server side as well as transaction aborts on the client side.
We also evaluate our design and provide a comparative study with a file system
that uses a separate journal.

The rest of the paper is organized as follows: Section 2 throws light upon
some of the existing works that have helped us understand and propose a design
for the transactional file system for Log-structured file systems (LFS). Section 3
provides an overview of the underlying architecture on which transaction support
for flash file system works. Section 4 describes the protocols used for recovery
from client and server side aborts. Section 5 contains the experiments and the
analysis of the results. Section 6 summarizes the work and proposes ideas for
future work.

2 Related Work

Transaction support to user applications can be provided within user space or
kernel space. The authors in [5] consider trade-offs between implementing trans-
action support within user space, on top of an exiting file system, or in kernel
space as part of a file sysem for a read or a write optimized file system. The dis-
sertation shows that a careful implementation of a transaction support within
the kernel in a write optimized file system can provide better performance than
all other possible set of implementations, both for a CPU or I/O bound system.
We, therefore, have implemented transaction support on a write-optimized file
system within the file system. But our implementation of the file system is in
user space due to time costraints. Other implementations such as Amino[8] have
provided transaction support within user space. Implementations such as Sprite

Recovery Protocols For Flash File Systems 3

LFS [3], Ext3 [6], Transactional Flash[4] provide support for transactions in a
generic manner.

Sprite LFS [3] is a prototype implementation of a log-structured file system. A
log-structured file system writes all modifications to disk in a sequential manner
similar to a log, thereby speeding up both write and recovery time. The log is the
only structure on the disk, which contains the indexing information that is used
to read files from the disk. The primary idea behind the design of Sprite LFS
was to buffer writes in a memory cache and then to flush the writes to the disk in
a sequential manner. This saves the time the read/write head spends in seeking
to the accurate disk location for each random read/write. Sprite LF'S essentially
uses copy-on-write and therefore does not write data/metadata blocks in place.
Traditional storage devices offer poor read performance for non-sequential reads.
Solid state drives and flash file systems provide higher read performance and
mitigate the effect of random reads.

Ext3 file system [6] provides faster recovery from crashes using metadata
journaling on disk. A journal is a circular log stored in a dedicated area of the file
system. Whenever updates are made to the disk, the corresponding metadata
blocks are written to the journal before being flushed to the disk. The data
blocks get updated to the disk first, then the metadata blocks are written to the
journal on disk. After the metadata blocks have been updated to the journal, the
transaction is assumed to be committed. However, the journal cannot be erased
unless and until the metadata blocks are synced back to the disk. Data blocks can
also be written to the log, and if this is done, then a transactional file system can
be implemented. However, the journal is mainly used only for metadata logging
to provide easy recovery from crashes, as a transaction file system has not been
implemented in Ext3 and there seems little point in incurring the extra overhead
of data block writes to the log in the absence of such an intereface.

Transactional Flash[4] is a write atomic interface implementation on a Solid
State Device. It uses a cyclic commit protocol for ensuring atomicity of writes.
The main aim of the commit protocol was to do away with the commit records
that have to be written to the disk on each transaction commit operation. The
authors of transactional flash have come up with a novel cyclic commit protocol,
wherein they use page level tagging. The drawback of such a scheme is that each
aborted transaction’s writes to the disk must be erased from the disk, before a
new version of the same page can be written to the disk. This induces a heavy
erase penalty on the disk, as erase level granularity on flash disks is a block.
To reduce the erase dependency, the authors develop another commit protocol
BPCC. Each page points to the last committed version of the page. It, however,
imposes certain restrictions on erase order, i.e. any page can be erased only after
the pages that it marks aborted are erased. Our recovery protocol uses an idea
that is similar to marking pages with some information (transaction identifier),
and it does not impose any restrictions on the erase order.

4 Ravi Tandon

3 Architecture

Our file system design uses a hybrid transaction management approach. Support
for locking that provides isolation and consistency, has been implemented in user
space[2]. The logging subsystem, that ensures atomicity and durability, has been
implemented within the file system, currently also implemented in user space,
although it can be easily moved to the kernel.

A client-server architecture is built, wherein the client side runs the user
application program and the server runs the file system. The calls at the user
level are traced using LD_PRELOAD runtime linker [7]. The system calls after
being intercepted are sent to the server side using Remote Procedure Calls. The
server handles the system call by creating a separate handler thread for each
transaction. This thread acts as a dispatcher for all the system call requests on
this connection.

3.1 Top Level Architecture

The basic architecture was implemented in [2]. In the present architecture each
client is a separate process. Each transaction begins with a txn_beg() and ends
with a txn_end() or txn_commit(). The transaction specific calls are implemented
as a shared library. In this work, we have replaced the Ext3 file system from the
server side and we have used a log-structured file system (YAFFS Yet Another
Flash File System [1]). Logging and crash management are now handled by the
YAFFS.

The transaction reader (TxReader) listens to system calls from the user pro-
cess (see Fig. 1). The transaction file system manager (TxFS Manager) interprets
the system call. If the system call requests opening of a file, then the transaction
file system manager sends a lock request to the Lock Manager. If the lock request
is granted by the lock manager then the transaction file system manager sends
a file open request to the translation layer. The translation layer forwards the
request to the YAFFS. The YAFFS library handles the open (or close) request.
On a read or a write system call, the transaction file system manager requests
the update manager to handle them. The update manager checks whether the
read or write system call is possible on the file (it checks whether the file has
already been locked or not). Once the check is done, and the read or the write is
allowed, then the update manager forwards the request to the translation layer
(this is the part that has been implemented in this work). The translation layer
converts the system calls for the Ext3 file system to those for YAFFS. These
calls are then handled by the YAFFS system call library.

4 Recovery Protocols

Recovery protocols restore a file system to a consistent state by reconstructing
the metadata and data of all the objects (files, directories, symbolic and hard
links) that had been modified by aborted transactions. Transactions can fail due

Recovery Protocols For Flash File Systems 5

Architectural Outline Of The Transactional Flash File System Design

TRANSACTION MANAGEMENT
(Embedded in the YAFFS file system)

FLASH DISK

Update Manager
Tx Reader yaffs_read () i
u read () >y (tr_read() ! Slr:ulated
S []s TXFS i :
E Transactional Y Mariase write () tr_write() yaffs_write () YAFFS FILE A
R system = SYSTEM Unix File
7
call g
[M
s>
4
o i E:)
c L
E L
S S
’ —> 7
tr_file_open()
L yaffs_open ()
Get Lock On File open (), write (), read ()

\ Lock Manager | >y Taffs_close()
- yaffs_abort()
Release Locks on Close (), Abort () s 8: S\;D;: J::rt r;‘;;ffsfséss:‘gtgl

Fig. 1: Overview of the architecture of Transactional Flash File System

to two reasons. Firstly, there can be client side aborts. Secondly, there can be
a server crash. Accordingly, the recovery protocols are divided into two broad
categories viz. Transaction abort recovery protocol and Server crash recovery
protocol.

4.1 Data Structures

YAFFS is a true log-structured file system. The log consists of segments (called
blocks) of pages (called chunks). Each chunk consists of an object identifier (in-
ode number), chunk identifier (logical page number), byte count and sequence
number. For server crash recovery protocol, we have added a transaction identi-
fier to each chunk. YAFFS maintains a node (called tnode) tree that maps each
logical chunk in the file to a physical chunk on disk. We maintain a chunk map
list (explained in subsection 4.2) that primarily stores a map that relates mod-
ified chunks of each file to their earlier on disk location. For transaction abort
recovery protocol, we maintain a list of all the transactions that have modified
any file, along with the file metadata (Transaction File Metadata List). For the
server crash recovery protocol, a pair of bitmaps (in memory and on disk) is
used in order to identify transaction status.

4.2 Transaction Abort Recovery Protocol

)

Transaction abort recovery protocol restores the metadata of objects that
have been modified by a user transaction abort. Transaction recovery restores
the chunk map tree (chunk map tree is a map which converts logical page in-
dices to physical page indices), file size and the timestamps of objects that have

6 Ravi Tandon

been modified. A log-structured file system has previous consistent copies of
data chunks (chunks are pages in YAFFS terminology) already on disk. Hence,
rewrites to disk are avoided.

Data Structures The data structures used for Transaction abort recovery
protocol are as follows:

1. Transaction File Metadata List: Transaction File Metadata List stores
a list of all those transactions that have modified any object. This list stores
metadata of all the objects that have been modified by the transaction.
The metadata is a snapshot of the previous state of the file before it was
modified by the transaction. The recovery protocol switches the metadata
state of objects to this consistent state once the transaction that modifies it
aborts. The members of this list are as follows:

— Transaction Identifier: Each element in the transaction file metadata
list is uniquely identified by a transaction and an object identifier. The
transaction identifier uniquely identifies a transaction.

— Object Identifier: The object identifier is the inode identifier for a file
(that has been modified by a transaction).

— File Length: The length of each file that has been modified by a trans-
action is stored. During recovery, the file length is restored to the original
file length (that was before a transaction modified it).

— Chunk Map List: To restore a file the chunk map tree has to be restored
in a log-structured file system. The chunk map list stores a map of pages
that have been modified along with their previous consistent states on
disk. The transaction file metadata list stores a pointer to a chunk map
list.

2. Chunk Map List: Chunk map list stores a mapping from the logical space
to the physical (on-disk) space for each chunk. Transaction abort recovery
protocol is an undo based protocol. The physical identifier of a chunk in
this list is the image of the chunk that was present before the transaction
modified it. The list is an in-memory structure. Chunk map list consists of
the following members:

— Logical Chunk Identifier: The logical chunk identifier identifies a
chunk(page) within a file. Only those chunks that have been modified by
a transaction are stored within this list.

— Physical Chunk Identifier: For each modified chunk the previous con-
sistent image is stored in a physical chunk identifier. It translates to
on-disk address of a chunk.

The Protocol Transaction abort recovery protocol proceeds in three steps:

1. Initialization: The initialization phase initializes the transaction file meta-
data list by inserting the transaction identifier of each uncommitted trans-
action and the metadata of objects that each such transaction identifies.

Recovery Protocols For Flash File Systems 7

2. Update: On a write call, since a copy-on-write takes place, data is written
on to a new chunk. Whenever, a chunk is flushed to the disk (because of sync
called by the user, use of write through mechanism, cache buffers become
full), the logical chunk id to physical chunk id of each modified chunk is
inserted in the chunk map list within the transaction file metadata list.

3. Recovery/Rollback: The recovery is an undo based rollback mechanism.
The file length is updated. The chunk tree is restored to an earlier consistent
state using the chunk map list in the transaction file metadata list.

4.3 Server Crash Recovery Protocol

The Server Crash Recovery Protocol is based on the concept of identification of
the committed transactions through the on-disk inode (object header in YAFF'S).
Every time a commit takes place the file is closed and the inode is written to
the disk. Each chunk written to the disk (both data and metadata chunk) has a
tag field, which identifies the transaction that has written the chunk to the disk.
Inodes written to the disk identify committed transactions.

Data Structures The following data structures are maintained for the server
crash recovery protocol:

— In-Memory Transaction Bitmap: It is an in-memory data structure that
maintains the state of all the transactions. It stores the status of each trans-
action . Currently, the transaction state consists of a committed and an
uncommitted state. The transaction identifiers are allocated by the file sys-
tem itself, so there are no issues of collision of transaction identifiers (handled
by keeping a pool of free transaction identifiers). The structure is a bitmap,
storing binary information for each transaction identifier i.e. 1 for a commit-
ted transaction and 0 for an uncommitted transaction. Whenever a chunk is
to be validated for commit or abort status, the transaction bitmap is looked
up and the value provides the validity of the chunk.

— On-Disk Transaction Bitmap: On-disk transaction bitmaps are required
to persist the status of transactions across reboots. Garbage collection in
log-structured file systems may lead to intermediate inodes getting cleaned
resulting in some data chunks becoming falsely uncommitted. The on-disk
transaction bitmap stores the status of all transactions that have been com-
mitted. After every boot, a scan takes place that builds the in-memory data
structures required by the file system. On encountering an inode-chunk the
in-memory transaction bitmap is updated. On the completion of the scan
process, the in-memory transaction bitmap is synced with the on-disk trans-
action bitmap. If the on disk transaction bitmap is stale, we flush the in-
memory transaction bitmap to the disk. Thereby ensuring the consistency
of all those transactions for which the mapping inode chunks have been in-
validated due to re-write of the inode chunk. It is implemented by allocating
a set of chunks in a file (t_bmap).

8 Ravi Tandon

Protocol Implementation The server crash recovery protocol consists of two
stages, a scan stage and a sync stage.

1. The Scan Stage: The first stage in the recovery is the stage after the
crash takes place and the file system boots. The file system scans the data
and the metadata chunks in the opposite direction. This ensures that the
inode chunks for each committed transaction are encountered first and fol-
lowed by their respective data chunks . The in-memory transaction bitmap
is initialized to all zeros - reflecting that as of now the file system does not
know of any committed transaction. On a scan two categories of chunks are
encountered:

(a) Metadata Chunks: Each metadata chunk identifies a committed trans-
action. Therefore, the corresponding bit within the in-memory transac-
tion bitmap is updated to reflect a committed transaction.

(b) Data Chunks: There are basically two kinds of data chunks. They are:

i. Normal Data Chunk: On encountering a normal files data chunk,
the recovery protocol performs a validation check. The transaction
identifier of the data chunk is checked against the in-memory transaction-
bitmap. If the corresponding bit is set to one this data chunk be-
comes part of a committed transaction else the chunk is marked to
be deleted.

ii. Bitmap Data Chunk: On encountering the bitmap data chunk,
the bitmap data is read in the t_bmap file as a normal file. This
is later opened and read in the sync stage, so that the unmapped
committed transactions persist across reboots.

2. The Sync Stage: After the scan completes, the t_bmap file is read and
all the transactions that are marked committed in the on-disk bitmap are
marked valid in the in-memory data chunk. This way the transactions for
which the inode gets over-written persist across the reboots and the in-
memory transaction-bitmap reflects a consistent view of the transaction-
identifier space. The on-disk bitmap is checked for staleness. The on-disk
bitmap becomes stale when there is at least a single committed transac-
tion that has not been marked committed on the on-disk bitmap. This oc-
curs when the transaction is committed after the last scan. The transaction
bitmap is then written back to disk only if it was earlier found to be stale.

5 Evaluation

The primary objective of the experimental study was to measure the performance
of our recovery protocols (implemented in YAFFS) with existing techniques. A
file system that writes to a separate log file for journaling data (Separate Log
FS) has been modelled. We have considered transaction aborts while measuring
performance. Overheads due to data writes to files during the recovery process
have been compared.

Recovery Protocols For Flash File Systems 9

5.1 Experimental Setup

For the experimental study we have used a client server (file server) architec-
ture. The client sends request to the server through Remote Procedure Calls.
The transaction aborts were communicated to the server by the client. Each
transaction opens a file, writes data in the file and either aborts or commits.
Finally the data is read by the last transaction. We have performed experiments
on three sets of data writes per transaction. The sets have been divided accord-
ing to the amount of data that is written to the disk per transaction. The three
categories are:

1. Small Data Per Transaction
For this category we have taken data of the order of 5-10 KB per transaction.
2. Medium Data Per Transaction
For this category we have taken data of the order of 10-20 KB per transac-
tion.
3. Large Data Per Transaction
For this category we have taken data of the order of 20-50 KB per transac-
tion.

For each of the above categories of data writes per transaction, we have simu-
lated transaction aborts on the client side and measured the performance of our
transaction abort recovery protocol. The parameter for performance measure is
the overhead incurred during data writes to disk per transaction. Consistency of
the data written by the client has also been checked. Each experiment consists
of five different abort rates (0%, 20%, 32%, 70%, 77%). The results for each
category (for a particular abort rate) have been obtained by taking an average
over 1000 transactions.

5.2 Separate Log File System

This file system uses a separate log to journal data writes. Recovery is done
using undo operations that read consistent image of data from the journal. The
earlier image of data blocks gets written to the log. On a transaction abort, all
the data blocks that have been written by the aborted transaction are recovered
from the log. On a transaction commit the inode block and all the data blocks
are written to disk. The journal is a separate file. Unlike a log-structured file
system, it supports writing in place. Only data blocks are journaled to the log
to ensure consistency.

5.3 Results

In 1 each transaction writes about 7.5 KB of data to the disk and at very high
abort rates the data written to the disk falls down to 1.5 KB (effective data
written) per transaction. Some of the observations are:

10 Ravi Tandon

Table 1: Comparison of Overheads: YAFFS VS Separate Log F'S for small writes
per transaction

Abort Rate|Effective Data Overhead Overhead Overhead Ratio
(IN %) Written |Separate Log FS| YAFFS |Separate Log FS:YAFFS
0 7430 0.85 0.57 1.17
20 5922 1.33 0.91 1.21
32 4689 1.94 1.34 1.25
70 3001 3.56 2.48 1.31
77 1499 8.17 5.74 1.36

9 T

YAFFS-overhead ——
FS with separate log-overhead ---x---
x

Data Overhead

0 10 20 30 40 50 60 70 80
Abort Rate

Fig.2: Comparison of write overhead of the actual results with the theoretical
model for Separate Log File System and YAFFS for small writes per transaction

1. The overhead ratio for the separate log scheme was almost 1.25 times more
than that for YAFFS. This is because for each write to the disk the previous
image of the data chunk is written to the disk. However, this is not close to
two. For a sequential write model only a single page is written back to the
disk per transaction.

2. YAFFS performs better than the separate log based journaling file system
(see Fig. 2) primarily because YAFFS does not write duplicate data to the
disk. This reduces writes to the disk and the overall overhead is less.

5.4 Comparison Across Writes

From Fig. 3a and Fig. 3b, the following observations can be made:

Recovery Protocols For Flash File Systems 11

T T
Overhead Small Writes —+—
: Overhead Medium Wites -----

T T
Overhead Small Writes ——
Overhead Medium Writes ---x-
Overhead Large Writes -

%

Overhead
Overhead

Overhead Large Writes -+ |

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70
Abort Rate Abort Rate

(a) (b)

Fig. 3: Comparison of the overhead over different write sizes. (a) Shows the com-
parison of overheads for YAFFS across the three different write patterns. (b)
Shows the comparison of overheads for Separate Log FS across the three differ-
ent write patterns.

1. The overhead, when the abort rate is low, decreases as the size of data written
per transaction increases. For each transaction commit inode is flushed to
the disk. Therefore, if the amount of effective data that is written to the disk
for each transaction is high, then the overhead cost that is incurred becomes
low.

2. At higher abort rates, however the overhead for the large writes increases.
This occurs because a large amount of data that belongs to aborted trans-
actions is flushed to the disk. Thus, the overall writes to the disk increase.

The experimental study performed conclusively shows that YAFFS outper-
forms file system with separate log, which incurs heavy overheads due to writes
to the log. The overall data overhead for the file system with separate log was
1.25 to 1.40 to that of YAFFS. The overhead due to writes is affected by the
size of data that gets written to the file per transaction and the abort rate. The
overhead mainly occurs due to metadata writes, duplicate data writes (write on
a partially written block involves rewriting some of the earlier data as the gran-
ularity of write is a block) and writes of aborted transactions. For a particular
range of data writes per transaction (viz. small, medium, large) as the abort
rate increased the overhead increased too. A comparison across write sizes re-
veals interesting results for a log-structured file system. At lower abort rates the
overhead decreases as the writes per transaction increase. At a fixed abort rate
variation in the overhead across different write sizes is observed due to metadata
writes. As the amount of data written to disk per transaction increases the over-
head decreases. As the abort rates increases a different effect is observed. The
overhead due to aborted data became the dominating factor over the overhead
due to the metadata write. This is because the metadata write is almost con-
stant per transaction and the data written to disk per transaction increases. At

80

12 Ravi Tandon

20% abort the overhead decreased from 0.91 (for small writes per transaction)
to 0.64 (for large writes per transaction). At 70% abort rate the overhead was
actually lesser for smaller writes (overhead =~ 2.48) than that for large writes
per transaction (overhead ~ 3.37). This is because the overhead due to aborted
writes becomes much larger as compared to the overhead due to metadata write
per transaction.

6 Conclusion

This work presents a design for providing transaction support in a log-structured
file system for flash devices. The primary idea proposed is to tag pages with
the transaction identifiers and to flush file inodes at the time of commit, thus,
enabling the transactions to be identified as aborted or committed. We provide
a transaction abort and a server crash recovery protocol. Using a comparison
based simulation study this work shows that supporting transactions within
log-structured file systems is efficient in terms of writes to the storage disk. The
copy-on-write feature of log-structured file systems along with high speed random
reads in flash file systems can enhance the performance of user applications and
at the same time ensure consistency.

Copy-on-write capabilities of a flash file system can be effectively used for
an online versioning system. The versioning system would make use of transac-
tional support from the file system. Applications such as an online backup of
a transactional log-structured file system present scope for future research and
development.

References

1. http://www.yaffs.net/.

2. Lipika Deka. On-line Consistent Backup in Transactional File Systems. PhD thesis,
Dept of Computer Science and Engineering, II'T Guwahati, April 2012.

3. John K. Ousterhout Mendel Rosenblum. The design and implementation of a log-
structured file system. Proceedings of the 13th ACM Symposium on Operating Sys-
tems Principles, February 1992.

4. Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou. Transactional flash.
In Proceedings of the 8th USENIX conference on Operating systems design and im-
plementation, OSDI’08, pages 147-160, Berkeley, CA, USA, 2008. USENIX Associ-
ation.

5. Margo 1. Seltzer and Michael Stonebraker. Transaction support in read optimizied
and write optimized file systems. In Proceedings of the 16th International Conference
on Very Large Data Bases, VLDB ’90, pages 174—185, San Francisco, CA, USA,
1990. Morgan Kaufmann Publishers Inc.

6. S.C. Tweedie. Journaling the linux ext2fs filesystem. In The Fourth Annual Linuz
Ezpo, 1998.

7. Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez Zadok. Extending
acid semantics to the file system. Trans. Storage, vol. 3(no. 2), June 2007.

8. Charles Philip Wright. Eztending acid semantics to the file system via ptrace. PhD
thesis, Stony Brook, NY, USA, 2006. AAI3238986.

